摘要:
The invention relates to the production of nanoporous silica dielectric films and to semiconductor devices and integrated circuits comprising these improved films. The nanoporous films of the invention are prepared using silicon containing pre-polymers and are prepared by a process that allows crosslinking at lowered gel temperatures by means of a metal-ion-free onium or nucleophile catalyst.
摘要:
The invention relates to the production of nanoporous silica dielectric films and to semiconductor devices and integrated circuits comprising these improved films. The nanoporous films of the invention are prepared using silicon containing pre-polymers and are prepared by a process that allows crosslinking at lowered gel temperatures by means of a metal-ion-free onium or nucleophile catalyst.
摘要:
A colloidal suspension of nanoparticles composed of a dense material dispersed in a solvent is used in forming a gap-filling dielectric material with low thermal shrinkage. The dielectric material is particularly useful for pre-metal dielectric and shallow trench isolation applications. According to the methods of forming a dielectric material, the colloidal suspension is deposited on a substrate and dried to form a porous intermediate layer. The intermediate layer is modified by infiltration with a liquid phase matrix material, such as a spin-on polymer, followed by curing, by infiltration with a gas phase matrix material, followed by curing, or by curing alone, to provide a gap-filling, thermally stable, etch resistant dielectric material.
摘要:
A colloidal suspension of nanoparticles composed of a dense material dispersed in a solvent is used in forming a gap-filling dielectric material with low thermal shrinkage. The dielectric material is particularly useful for pre-metal dielectric and shallow trench isolation applications. According to the methods of forming a dielectric material, the colloidal suspension is deposited on a substrate and dried to form a porous intermediate layer. The intermediate layer is modified by infiltration with a liquid phase matrix material, such as a spin-on polymer, followed by curing, by infiltration with a gas phase matrix material, followed by curing, or by curing alone, to provide a gap-filling, thermally stable, etch resistant dielectric material.
摘要:
A colloidal suspension of nanoparticles composed of a dense material dispersed in a solvent is used in forming a gap-filling dielectric material with low thermal shrinkage. The dielectric material is particularly useful for pre-metal dielectric and shallow trench isolation applications. According to the methods of forming a dielectric material, the colloidal suspension is deposited on a substrate and dried to form a porous intermediate layer. The intermediate layer is modified by infiltration with a liquid phase matrix material, such as a spin-on polymer, followed by curing, by infiltration with a gas phase matrix material, followed by curing, or by curing alone, to provide a gap-filling, thermally stable, etch resistant dielectric material.
摘要:
The invention relates to the production of nanoporous silica dielectric films and to semiconductor devices and integrated circuits comprising these improved films. The nanoporous films of the invention are prepared using silicon containing pre-polymers and are prepared by a process that allows crosslinking at lowered gel temperatures by means of a metal-ion-free onium or nucleophile catalyst.
摘要:
The invention relates to the production of nanoporous silica dielectric films and to semiconductor devices and integrated circuits comprising these improved films. The nanoporous films of the invention are prepared using silicon containing pre-polymers and are prepared by a process that allows crosslinking at lowered gel temperatures by means of a metal-ion-free onium or nucleophile catalyst.
摘要:
The present invention provides an organosiloxane comprising at least 80 weight percent of Formula I: [Y0.01-1.0SiO1.5-2]a[Z0.01-1.0SiO1.5-2]b[H0.01-1.0SiO1.5-2]c where Y is aryl; Z is alkenyl; a is from 15 percent to 70 percent of Formula I; b is from 2 percent to 50 percent of Formula I; and c is from 20 percent to 80 percent of Formula I. The present composition is useful in semiconductor devices and may be advantageously used as an etch stop.
摘要:
Compositions for use in tri-layer applications are described herein, wherein the composition has a matrix and includes: a formulated polymer comprising at least one type of silicon-based moiety forming the matrix of the polymer, a plurality of vinyl groups coupled to the matrix of the polymer, and a plurality of phenyl groups coupled to the matrix of the polymer, at least one condensation catalyst, and at least one solvent. Tri-layer structures are also contemplated herein that comprise an organic underlayer (first layer), antireflective compositions and/or films contemplated herein (second layer) and a photoresist material (third layer) that are coupled to one another. Methods of producing a composition for tri-layer patterning applications includes: providing a formulated polymer comprising at least one type of silicon-based moiety forming the matrix of the polymer, a plurality of vinyl groups coupled to the matrix of the polymer, and a plurality of phenyl groups coupled to the matrix of the polymer, providing at least one condensation catalyst, providing at least one solvent, providing at least one pH modifier, blending the formulated polymer and part of the at least one solvent in a reaction vessel to form a reactive mixture; and incorporating the at least one pH modifier, the at least one condensation catalyst and the remaining at least one solvent into the reactive mixture to form the composition.
摘要:
The present invention provides an organosiloxane comprising at least 80 weight percent of Formula 1: [Y0.01-1.0SiO1.5-2]a{Z0.01-1.0SiO1.5-2]b[H0.01-1.0SiO1.5-2]c (where Y is aryl; Z is alkenyl; a is from 15 percent to 70 percent of Formula 1; b is from 2 percent to 50 percent of Formula 1; and c is from 20 percent to 80 percent of Formula 1. The present organosiloxane may be used as ceramic binder, high temperature encapsulant, and fiber matrix binder. The present composition is also useful as an adhesion promoter in that it exhibits good adhesive properties when coupled with other materials in non-microelectronic or microelectronic applications. Preferably, the present compositions are used in microelectronic applications as etch stops, hardmasks, and dielectrics.