摘要:
A three-dimensional non-volatile memory system is disclosed including a memory array utilizing shared pillar structures for memory cell formation. A shared pillar structure includes two non-volatile storage elements. A first end surface of each pillar contacts one array line from a first set of array lines and a second end surface of each pillar contacts two array lines from a second set of array lines that is vertically separated from the first set of array lines. Each pillar includes a first subset of layers that are divided into portions for the individual storage elements in the pillar. Each pillar includes a second subset of layers that is shared between both non-volatile storage elements formed in the pillar. The individual storage elements each include a steering element and a state change element.
摘要:
A non-volatile memory core comprises one or more memory bays. Each memory bay comprises one or more memory blocks that include a grouping of non-volatile storage elements. In one embodiment, memory blocks in a particular memory bay share a group of read/write circuits. During a memory operation, memory blocks are transitioned into active and inactive states. The process of transitioning blocks from an inactive state to an active state includes enabling charge sharing between a memory block entering the active state and another memory block that was previously in the active state. This charge sharing improves performance and/or reduces energy consumption for the memory system.
摘要:
A self-aligned fabrication process for three-dimensional non-volatile memory is disclosed. A double etch process forms conductors at a given level in self-alignment with memory pillars both underlying and overlying the conductors. Forming the conductors in this manner can include etching a first conductor layer using a first repeating pattern in a given direction to form a first portion of the conductors. Etching with the first pattern also defines two opposing sidewalls of an underlying pillar structure, thereby self-aligning the conductors with the pillars. After etching, a second conductor layer is deposited followed by a semiconductor layer stack. Etching with a second pattern that repeats in the same direction as the first pattern is performed, thereby forming a second portion of the conductors that is self-aligned with overlying layer stack lines. These layer stack lines are then etched orthogonally to define a second set of pillars overlying the conductors.
摘要:
A rewriteable nonvolatile memory includes a thin film transistor and a switchable resistor memory element in series. The switchable resistor element decreases resistance when subjected to a set voltage magnitude applied in a first direction, and increases resistance when subjected to a reset voltage magnitude applied in a second direction opposite the first. The memory cell is formed in an array, such as a monolithic three dimensional memory array in which multiple memory levels are formed above a single substrate. The thin film transistor and a switchable resistor memory element are electrically disposed between a data line and a reference line which are parallel. A select line extending perpendicular to the data line and the reference line controls the transistor.
摘要:
A non-volatile memory core comprises one or more memory bays. Each memory bay comprises one or more memory blocks that include a grouping of non-volatile storage elements. In one embodiment, memory blocks in a particular memory bay share a group of read/write circuits. During a memory operation, memory blocks are transitioned into active and inactive states. The process of transitioning blocks from an inactive state to an active state includes enabling charge sharing between a memory block entering the active state and another memory block that was previously in the active state. This charge sharing improves performance and/or reduces energy consumption for the memory system.
摘要:
A nonvolatile memory cell comprising a diode formed of semiconductor material can store memory states by changing the resistance of the semiconductor material by application of a set pulse (decreasing resistance) or a reset pulse (increasing resistance.) In preferred embodiments, set pulses are applied with the diode under forward bias, while reset pulses are applied with the diode in reverse bias. By switching resistivity of the semiconductor material of the diode, a memory cell can be either one-time programmable or rewriteable, and can achieve two, three, four, or more distinct data states.
摘要:
The present invention provides for a via and staggered routing level structure. Vertically overlapping vias connect to two or more routing levels formed at different heights. The routing levels are either both formed above or both formed below the vias, and all are formed above a semiconductor substrate wafer. In this way vias can be formed having a pitch smaller than the pitch of either the first routing level or the second routing level, saving space.
摘要:
A re-writable resistance-switching memory cell includes first and second capacitors in series. The first and second capacitors may have balanced electrical characteristics to allow nearly concurrent, same-direction switching. The first capacitor has a first bipolar resistance switching layer between first and second conductive layers, and the second capacitor has a second bipolar resistance switching layer between third and fourth conductive layers. The first and third conductive layers are made of a common material, and the second and fourth conductive layers are made of a common material. In one approach, the first and second bipolar resistance switching layers are made of a common material and have common thickness. In another approach, the first and second bipolar resistance switching layers are made of materials having different dielectric constants, but their thickness differs in proportion to the difference in the dielectric constants, to provide a common capacitance per unit area.
摘要:
A rewriteable nonvolatile memory cell having two bits per cell is described. The memory cell preferably operates by storing charge in a dielectric charge storage layer or in electrically isolated conductive nanocrystals by a channel hot electron injection method. In preferred embodiments the channel region has a corrugated shape, providing additional isolation between the two storage regions. The channel region is deposited and is preferably formed of polycrystalline germanium or silicon-germanium. The memory cell of the present invention can be formed in memory arrays; in preferred embodiments, multiple memory levels are formed stacked above a single substrate.