Abstract:
Disclosed herein is a multi-layer type printed circuit board, including; a first insulating layer including at least one first pillar; a plurality of insulating layers laminated in a both surfaces direction of the first insulating layer, each including at least one circuit layer and at least another pillar connected to the circuit layer; and a plurality of outermost circuit layers disposed on an outer surface of the outermost insulating layer, while contacting an outermost pillar disposed on an outermost insulating layer among the plurality of insulating layers, wherein the circuit layer and another pillar each formed in a both surfaces direction of the first insulating layer are disposed in a symmetrical form to each other based on the first insulating layer.
Abstract:
Disclosed herein are a printed circuit board and a method of manufacturing the same. According to a preferred embodiment of the present invention, the printed circuit board includes: a base substrate; an inner layer build-up layer formed on the base substrate and including a first inner layer circuit layer, a second inner layer circuit layer, an inner layer insulating layer, and an inner layer via having a tapered section; and an outer layer build-up layer formed on the inner layer build-up layer and including an outer layer circuit layer, an outer layer insulating layer, and an outer layer via having a rectangular section.
Abstract:
A coil component includes: a body; a coil disposed within the body; and an insulating film covering at least a portion of the coil in the body, wherein the insulating film includes a copolymer including a repeating unit derived from a monomer containing an unsaturated bond and a repeating unit derived from a parylene monomer.
Abstract:
Disclosed herein is a method of manufacturing a multilayer type coreless substrate, the method including: (A) preparing a carrier substrate including at least one copper foil formed on one surface or both surfaces of an insulating surface; (B) forming a coreless printed circuit precursor on one surface or both surfaces of the carrier substrate; (C) separating the carrier substrate; (D) performing a polishing cutting process on the coreless printed circuit precursor; and (E) laminating a plurality of other insulating layers on a flat outer surface of the coreless printed circuit precursor, the plurality of other insulating layers sequentially including other circuit layers and other pillars.
Abstract:
A coil component includes: a body; a coil buried in the body; an external electrode disposed on one surface of the body; and a lead-out portion connecting an end of the coil to the external electrode, wherein the lead-out portion and the end of the coil form an interface.
Abstract:
A coil component includes a body including a magnetic material; a support member disposed in the body; and a coil pattern on the support member in the body. The coil pattern may include a first conductor layer formed on the support member and having a planar spiral shape; a second conductor layer formed on the first conductor layer and having a volume of a lower portion greater than a volume of an upper portion; and a third conductor layer formed to cover the second conductor layer from the outside of the second conductor layer.
Abstract:
A thin film type inductor includes a body and external electrodes disposed on an external surface of the body. The body includes a support member and an internal coil supported by the support member, the internal coil includes an upper coil disposed on one surface of the support member and a lower coil disposed on the other surface thereof, and the upper and lower coils are connected to each other by a via electrode. Heights of a plurality of coil patterns arranged along a first virtual line are substantially equal to each other, and heights of a plurality of coil patterns arranged along a second virtual line increase toward the external surface of the body, where the first virtual line radiates from a center of a core of the body toward the via electrode and the second virtual line radiates in the opposite direction.
Abstract:
Disclosed herein is a multi-layer type coreless substrate, including: a first insulating layer including at least one first pillar; a plurality of insulating layers laminated on one surface or both surfaces of the first insulating layer, each including at least one circuit layer and at least another pillar connected to the circuit layer; and a plurality of outermost circuit layers contacting a pillar disposed on an outermost insulating layer of the plurality of insulating layers.