Abstract:
A method of manufacturing a printed circuit board includes arranging a core layer in which a bending prevention portion of at least two layers that are metal layers having different thermal expansion coefficients is disposed between a plurality of insulating members; forming a circuit pattern so as to have a desired pattern on at least one of the inside of the core layer and an outer face of the core layer; and forming an insulating layer including an opening portion that exposes the circuit pattern on the core layer.
Abstract:
A coil electronic component includes: a plurality of stacked coil layers each including coil patterns including anisotropic plating layers; conductive vias connecting the coil patterns formed on different coil layers to each other; and external electrodes electrically connected to the plurality of coil layers.
Abstract:
There are provided a package board and a package using the same. The package board according to an exemplary embodiment of the present disclosure includes: an insulating layer; a circuit pattern formed in the insulating layer; a capacitor formed on a whole surface of a horizontal plane in the insulating layer; and a first via penetrating through the capacitor and electrically connecting the circuit patterns each formed on upper and lower portions of the capacitor to each other.
Abstract:
There are provided a package board and a method for manufacturing the same. According to an exemplary embodiment of the present disclosure, a package board includes: a first insulating layer; a second insulating layer formed beneath the first insulating layer; a capacitor embedded in the first insulating layer and including a first electrode, a second electrode, and a dielectric layer formed between the first electrode and the second electrode; circuit layers formed on the first insulating layer and the second insulating layer; and a via formed between the capacitor and the circuit layers or between the circuit layers formed on the first insulating layer and the second insulating layer to electrically connect thererbetween, wherein an upper surface of the first electrode is formed to be exposed from the first insulating layer.
Abstract:
A method of manufacturing a ball grid array substrate includes: forming a first circuit pattern and a second circuit pattern on a first metal carrier and a second metal carrier, respectively; stacking a first insulating layer and a second insulating layer with a separable material interposed therebetween, wherein each of the first and second insulating layers has first and second surfaces opposing each other, and the first surface contacts the separable material; burying the first and second circuit patterns in the second surfaces of the first and second insulating layers, respectively; removing the first and second metal carriers; removing the separable material to separate the first and second insulating layers from each other; and forming an opening in each of the first and second insulating layers to connect the first and second surfaces with each other. The method may also be part of a process for manufacturing a semiconductor package.
Abstract:
A method of manufacturing a printed circuit board includes arranging a core layer in which a bending prevention portion of at least two layers that are metal layers having different thermal expansion coefficients is disposed between a plurality of insulating members; forming a circuit pattern so as to have a desired pattern on at least one of the inside of the core layer and an outer face of the core layer; and forming an insulating layer including an opening portion that exposes the circuit pattern on the core layer.
Abstract:
Disclosed herein is a multi-layer type coreless substrate, including: a first insulating layer including at least one first pillar; a plurality of insulating layers laminated on one surface or both surfaces of the first insulating layer, each including at least one circuit layer and at least another pillar connected to the circuit layer; and a plurality of outermost circuit layers contacting a pillar disposed on an outermost insulating layer of the plurality of insulating layers.
Abstract:
A multilayer seed pattern inductor includes a magnetic body and an internal coil part. The magnetic body contains a magnetic material. The internal coil part is embedded in the magnetic body and includes connected coil conductors disposed on two opposing surfaces of an insulating substrate. Each of the coil conductors includes a seed pattern formed of at least two layers, a surface coating layer covering the seed pattern, and an upper plating layer formed on an upper surface of the surface coating layer.
Abstract:
A coil component includes: a body including a magnetic material, coil pattern layers disposed in the magnetic material, a core portion surrounded by the coil pattern layers, and an insulating layer disposed in the core portion and between adjacent coil pattern layers among the coil pattern layers, wherein each of the coil pattern layers comprises a spiral-shaped pattern; and an external electrode disposed on the body.
Abstract:
A semiconductor package may include a frame including an insulation layer having a cavity formed in a lower surface of the insulation layer, a first post and a second post spaced apart from the cavity, and a metal plate disposed on an upper side of the cavity; a semiconductor chip having a first surface on which a connection pad is disposed and a second surface opposing the first surface; an encapsulant covering at least a portion of the semiconductor chip; and a connection structure disposed on the frame and the first surface of the semiconductor chip, and including one or more redistribution layers. The first post is electrically connected to the wiring layer of the frame and the redistribution layer of the connection structure, and the second post is spaced apart from the first post.