Abstract:
A memory device and a method of operating the memory device are provided for performing a read-retry operation. The method of operating the memory device includes starting a read-retry mode, reading data of multiple cell regions using different read conditions, and setting a final read condition for the cell regions according to results of data determination operations on data read from the cell regions.
Abstract:
A resistive memory device includes a memory cell array having a plurality of memory cells respectively connected to a plurality of first signal lines and a plurality of second signal lines crossing each other. A first write driver is configured to provide a write voltage to write data to the memory cells. A second write driver is configured to be disposed between the memory cell array and the first write driver and provide a write current generated based on the write voltage to a first signal line selected from among the plurality of first signal lines.
Abstract:
A method is for operating a memory device including a plurality of memory cells disposed in regions where a plurality of first signal lines and a plurality of second signal lines cross each other. The method includes applying an initial voltage to the plurality of first signal lines, floating the plurality of first signal lines to which the initial voltage is applied, applying a second inhibit voltage to the plurality of second signal lines, and increasing voltage levels of the plurality of first signal lines to a first inhibit voltage level via capacitive coupling between the plurality of first signal lines which are floated and the plurality of second signal lines to which the second inhibit voltage is applied.
Abstract:
A method of operating a memory device includes determining a value of an operating current flowing through a selected first signal line, to which a selection voltage is applied, from among a plurality of first signal lines; dividing an array of memory cells into n blocks, n being an integer greater than 1, based on the value of the operating current; and applying inhibit voltages having different voltage levels corresponding to the n blocks to unselected ones of second signal lines included in the n blocks. Each of the unselected second signal lines is a pathway through which leakage current may potentially flow due to the operating current flowing through the selected first signal line and a memory cell addressed by the unselected second signal line and the selected first signal line.
Abstract:
A method of operating a memory device, which includes of memory cells respectively arranged in regions where first signal lines and second lines cross each other, includes determining a plurality of pulses so that each of the plurality of pulses that are sequentially applied to a selected memory cell among the plurality of memory cells is changed according to a number of times of executing programming loops. In response to the change of the plurality of pulses, at least one of a first inhibit voltage and a second inhibit voltage is determined so that a voltage level of at least one of the first and second inhibit voltages that are respectively applied to unselected first and second signal lines connected to unselected memory cells among the plurality of memory cells is changed according to the number of times of executing the programming loops.
Abstract:
A semiconductor package includes first through third memory chips. The first memory chip is arranged on a package substrate, the second memory chip is arranged on the first memory chip, and the third memory chip is arranged between the first memory chip and the second memory chip. Each of the first through third memory chips includes a memory cell array storing data, stress detectors, a stress index generator, and a control circuit. The stress detectors are formed and distributed in a substrate, and detect stacking stress in response to an external voltage to output a plurality of sensing currents. The stress index generator converts the plurality of sensing currents into stress index codes. The control circuit adjusts a value of a feature parameter associated with an operating voltage of a corresponding memory chip, based on at least a portion of the stress index codes.
Abstract:
A nonvolatile memory device includes multi-level cells. A sensing method of the nonvolatile memory device includes: precharging a bit line and a sense-out node during a first precharge interval; identifying a first state of a selected memory cell, by developing the sense-out node during a first develop time and sensing a first voltage level of the sense-out node; precharging the sense-out node to a second sense-out precharge voltage; and identifying the first state of the selected memory cell from a second state adjacent thereto, by developing the sense-out node during a second develop time different from the first develop time and sensing a second voltage level of the sense-out node.
Abstract:
In operating a resistive memory device including a number of memory cells, a write pulse is applied to each of the plurality of memory cells such that each of the memory cells has a target resistance state between a first reference resistance and a second reference resistance higher than the first reference resistance. The resistance of each of the memory cells is read by applying a verify pulse to each of the plurality of memory cells. A verify write current pulse is applied to each of the memory cells that has resistance higher than the second reference resistance, and a verify write voltage pulse is applied to each of the memory cells that has resistance lower than the first reference resistance.
Abstract:
Provided are a nonvolatile memory device and a method for operating the nonvolatile memory device. The method for operating the nonvolatile memory device includes generating a first program voltage, applying the generated first program voltage to a first word line to which a first memory cell is connected for performing a first program operation on the first memory cell, determining whether a number of pulses of a pumping clock signal for generating the first program voltage is greater than or equal to a predetermined critical value n (where n is a natural number), and stopping the performing of the first program operation on the first memory cell when the number of pulses of the pumping clock signal is determined to be greater than or equal to the predetermined critical value n.
Abstract:
Provided are a resistive memory device including a plurality of memory cells, and a method of operating the resistive memory device. The resistive memory device includes a sensing circuit connected to a first signal line, to which a memory cell is connected, the sensing circuit sensing data stored in the memory cell based on a first reference current; and a reference time generator for generating a reference time signal that determines a time point when a result of the sensing is to be output, based on the first reference current.