Abstract:
In accordance with an embodiment of the present disclosure, an image synchronization device includes a light emitting source configured to emit light at intervals of a predetermined time, a sampling phase calibration circuit configured to calibrate a sampling phase of each of the first image sensor and the second image sensor on the basis of a light emitting timing of the light emitting source and a delay calibration circuit configured to generate delay information on the basis of a result of comparison between first image information transmitted from the first image sensor and second image information transmitted from the second image sensor.
Abstract:
A memory circuit may be provided. The memory circuit may include a memory array. The memory circuit may include an input and output path circuit coupled to a probe pad and a bump pad, and may be configured to input and output a signal between an exterior of the memory circuit and the memory array. The memory circuit may include a scanning circuit configured to generate a sensing signal by sensing a signal outputted through the bump pad while performing scanning of at least one of a reference voltage and a test strobe signal.
Abstract:
A semiconductor device is disclosed, which relates to a technology for a sense-amplifier (sense-amp) configured to compensate for mismatch of a sensing bit-line. The semiconductor device includes a sense-amplifier configured to selectively control connection between a pair of bit lines and a pair of sensing bit lines in response to a connection control signal in an offset compensation period, and precharge a pull-down power-supply line with a bit line precharge voltage level in the offset compensation period. The semiconductor device also includes a pull-down voltage controller configured to increase a voltage of the pull-down power-supply line by a predetermined level in response to a pull-down control signal in the offset compensation period.
Abstract:
A semiconductor system includes a semiconductor device. The semiconductor device executes an active operation according to a combination of command/address signals to store location information of mats selectively activated. In addition, the semiconductor device enters a refresh operation according to a combination of the command/address signals to selectively activate the mats included in a memory part according to the location information stored in the semiconductor device in response to a mat control signal.
Abstract:
A semiconductor device may include a buffer control signal generation circuit, an input control signal generation circuit and an internal data generation circuit. The buffer control signal generation circuit may be configured to generate a buffer control signal. The buffer control signal may be enabled in synchronization with a point of time that a predetermined section elapses from a point of time that a write command signal is generated. The input control signal generation circuit may be configured to receive a data strobe signal to generate an input control signal, in response to the buffer control signal. The internal data generation circuit may be configured to receive a data signal to generate internal data.
Abstract:
A semiconductor device is disclosed, which relates to a technology for a sense-amplifier (sense-amp) configured to compensate for mismatch of a sensing bit-line. The semiconductor device includes a sense-amplifier configured to selectively control connection between a pair of bit lines and a pair of sensing bit lines in response to a connection control signal in an offset compensation period, and precharge a pull-down power-supply line with a bit line precharge voltage level in the offset compensation period. The semiconductor device also includes a pull-down voltage controller configured to increase a voltage of the pull-down power-supply line by a predetermined level in response to a pull-down control signal in the offset compensation period.
Abstract:
A semiconductor device is disclosed, which relates to a technology for a sense-amplifier (sense-amp) configured to compensate for mismatch of a sensing bit-line. The semiconductor device includes a sense-amplifier configured to selectively control connection between a pair of bit lines and a pair of sensing bit lines in response to a connection control signal in an offset compensation period, and precharge a pull-down power-supply line with a bit line precharge voltage level in the offset compensation period. The semiconductor device also includes a pull-down voltage controller configured to increase a voltage of the pull-down power-supply line by a predetermined level in response to a pull-down control signal in the offset compensation period.
Abstract:
A semiconductor device may be provided. The semiconductor device may include a first chip and a second chip. The second chip may be configured to receive signals from the first chip to generate a latch address based on the received signals from the first chip.
Abstract:
A memory module may include a plurality of memory groups configured to include a plurality of memory packages, respectively, and input/output data through input/output pins. The memory module may include a control circuit configured to activate one or more of the plurality of memory groups on a basis of an address signal. The memory module may include a multiplexer circuit configured to couple the memory group activated on the basis of the address signal to input/output buses of the memory module.
Abstract:
A memory device may include: an active controller configured to output a row active signal in response to a refresh control signal and a row enable signal when an active signal is activated; a refresh controller configured to generate and store a flag bit for controlling a refresh operation in response to a refresh signal, a precharge signal, and a precharge stop signal, and output the row enable signal corresponding to the stored flag bit to the active controller; and a cell array circuit configured to perform a refresh operation in memory cell array areas in response to the row active signal.