Abstract:
A charge constrained bit sequence is processed to obtain a lower bound on a number of bit errors associated with the charge constrained bit sequence. The lower bound is compared against an error correction capability threshold associated with an error correction decoder. In the event the lower bound is greater than or equal to the error correction decoder threshold, an error correction decoding failure is predicted.
Abstract:
A storage system includes a channel detector, an LDPC decoder, and an erasure block. The channel detector is configured to receive data corresponding to data read from a storage and output an LLR signal. The LDPC decoder is configured to receive the LLR signal and output a feedback signal to the channel detector. The erasure block is configured to erase at a portion of at least one of the LLR signal and the feedback signal. A method for testing includes generating an error rate function corresponding to an erasure pattern. The function is a function of a number of LDPC iterations. The method includes determining testing parameters at least in part based on the error rate function, wherein the testing parameters comprise a testing number of LDPC iterations, a passing error rate, and the erasure pattern. The method includes testing storage devices using the testing parameters.
Abstract:
A system and method for determining soft read data for a group of cells in a nonvolatile flash memory are disclosed. An expected value representative of a plurality of stored values in a group of cells is obtained. A measured value representative of the plurality of stored values in the group of cells is obtained, based on a single read to the group of cells. A soft read data for the group of cells is determined based at least in part on the expected value and the measured value. The expected and measured values may include at least one of a number of 0s, a number of 1s, a ratio of 0s to 1s or a ratio of 1s to 0s. A reliability for a bit i may be obtained using a one-step majority logic decoder, and a threshold reliability may be used when determining the soft read data.
Abstract:
It is decided whether to adjust data associated with a decoder. In the event it is decided to adjust the data associated with the decoder, the data is adjusted to obtain adjusted data and decoding is performed on the adjusted data. In the event it is decided to not adjust the data associated with the decoder, decoding is performed on the data associated with the decoder.
Abstract:
A first read threshold associated with a first page in a block and a second read threshold associated with a second page in the block are received, where the first page has a first page number and the second page has a second page number. A slope and a y intercept are determined based at least in part on the first read threshold, the second read threshold, the first page number, and the second page number. The slope and the y intercept are stored with a block identifier associated with the block.
Abstract:
A first read threshold associated with a first page in a block and a second read threshold associated with a second page in the block are received, where the first page has a first page number and the second page has a second page number. A slope and a y intercept are determined based at least in part on the first read threshold, the second read threshold, the first page number, and the second page number. The slope and the y intercept are stored with a block identifier associated with the block.
Abstract:
A next read threshold is determined by determining a first number of solid state storage cells having a stored voltage which falls into a first voltage range and determining a second number of solid state storage cells having a stored voltage which falls into a second voltage range. A gradient is determine by taking a difference between the first number of solid state storage cells and the second number of solid state storage cells. The next read threshold is determined based at least in part on the gradient.
Abstract:
Decoding associated with a second error correction code and a first error correction code is performed. Ns first and second-corrected segments of data, first sets of parity information, and second sets of parity information are intersegment interleaved to obtain intersegment interleaved data, where the Ns segments of data, the Ns first sets of parity information, and the Ns second sets of parity information have had decoding associated with the first and the second error correction code performed on them (Ns is the number of segments interleaved together). Decoding associated with a third error correction code is performed on the intersegment interleaved data and interleaved parity information to obtain at least third-corrected interleaved data. The third-corrected interleaved data is de-interleaved.
Abstract:
A decoder includes a syndrome generator for receiving a codeword and generating at least two syndromes based on the codeword, an error location polynomial generator for generating an error-location polynomial based on the syndromes, an error location determiner for determining at least one error location based on the error-location polynomial, and an error corrector for correcting the codeword based on the one error location. The error location polynomial generator includes a logic for receiving the syndromes and generating a combination of the syndromes as a combination of coefficients of the error-location polynomial, and a key equation solver for generating the error-location polynomial based on the combination of the coefficients and finding at least one root of the error-location polynomial. The error location determiner determines the error location based on a combination of the root and one of the syndromes.
Abstract:
A charge constrained bit sequence is processed to obtain a lower bound on a number of bit errors associated with the charge constrained bit sequence. The lower bound is compared against an error correction capability threshold associated with an error correction decoder. In the event the lower bound is greater than or equal to the error correction decoder threshold, an error correction decoding failure is predicted.