Abstract:
Memory systems may include a memory storage, and a controller suitable for measuring a write amplification (WA) value of a first, current window, comparing the WA value for the first window with a previous WA value for a previous window, and calculating and setting a value of a ratio threshold based on the comparison of the WA value for the current window threshold to the WA value of the previous window threshold.
Abstract:
A total bytes written (TBW) requirement associated with solid state storage is obtained. A size of a cache associated with the solid state storage is determined based at least in part on the TBW requirement. The size of the cache is adjusted to be the determined size
Abstract:
An address is received. One or more neighbors associated with the received address is/are determined. One or more neighboring hot metrics is/are determined for the one or more neighbors associated with the received address. A hot metric for the received address is determined based at least in part on the neighboring hot metrics.
Abstract:
A codebook which includes a plurality of messages and a plurality of codewords, a specified codeword bit value, and a specified message bit value are obtained. The LLR for bit ci in a codeword is generated, including by: identifying, from the codebook, those codewords where bit ci has the specified codeword bit value; for a message which corresponds to one of the codewords where bit ci has the specified codeword bit value, identifying those bits which have the specified message bit value; and summing one or more LLR values which correspond to those bits, in the message which corresponds to one of the codewords where bit ci has the specified codeword bit value, which have the specified message bit value.
Abstract:
A charge constrained bit sequence is processed to obtain a lower bound on a number of bit errors associated with the charge constrained bit sequence. The lower bound is compared against an error correction capability threshold associated with an error correction decoder. In the event the lower bound is greater than or equal to the error correction decoder threshold, an error correction decoding failure is predicted.
Abstract:
A read back bit sequence and charge constraint information are obtained. A lower bound on a number of bit errors associated with the read back bit sequence is determined based at least in part on the read back bit sequence and the charge constraint information. The lower bound and an error correction capability threshold associated with an error correction decoder are compared. In the event the lower bound is greater than or equal to the error correction capability threshold, an error correction decoding failure is predicted and in response to the prediction a component is configured to save power.
Abstract:
A read is performed using a first iteration of a read threshold voltage that is set to a default voltage to obtain a first characteristic. A second iteration of the read threshold voltage is generated using the default voltage and an offset. A read is performed using the second iteration of the read threshold voltage to obtain a second characteristic. A third iteration of the read threshold voltage is generated using the first and second characteristics. A read is performed using the third iteration of the read threshold voltage to obtain a third characteristic. It is determined if the third characteristic is one of the two characteristics closest to a stored characteristic. If so, a fourth iteration of the read threshold voltage is generated using the two closest characteristics.
Abstract:
A bit flip count is determined for each bin in a plurality of bins, including by: (1) performing a first read on a group of solid state storage cells at a first threshold that corresponds to a lower bound for a given bin and (2) performing a second read on the group of solid state storage cells at a second threshold that corresponds to an upper bound for the given bin. A minimum is determined using the bit flip counts corresponding to the plurality of bins and the minimum is used to estimate an optimal threshold.
Abstract:
A first bit position of a cell in solid state storage is read where a sorting bit is obtained using the read of the first bit position. A second bit position of the cell is read for a first time, including by setting a first read threshold associated with the second bit position to a first value and setting a second read threshold associated with the second bit position to a second value. The second bit position of the cell is read for a second time, including by setting the first read threshold to a third value and setting the second read threshold to a fourth value. A new value for the first read threshold and for the second read threshold is generated using the sorting bit, the first read, and the second read.
Abstract:
A first read threshold associated with a first page in a block and a second read threshold associated with a second page in the block are received, where the first page has a first page number and the second page has a second page number. A slope and a y intercept are determined based at least in part on the first read threshold, the second read threshold, the first page number, and the second page number. The slope and the y intercept are stored with a block identifier associated with the block.