Abstract:
A solid-state image capturing device including: a semiconductor substrate having a photosensitive surface including a matrix of pixels as respective photoelectric converters; and a photochromic film disposed in a light path through which light is applied to each of the photoelectric converters, the photochromic film being made of a photochromic material having a light transmittance variable depending on the intensity of applied light in a predetermined wavelength range; wherein the light transmittance has a half-value period shorter than one frame during which pixel signals generated by the pixels are read from all the pixels.
Abstract:
The present disclosure relates to an imaging apparatus comprising an image sensor that includes an imaging surface in which many pixels are arranged vertically and horizontally, a pixel control unit that controls the image sensor, selects a pixel corresponding to a sampling function among pixels configuring a block by applying the sampling function for each block acquired by partitioning the imaging surface of the image sensor into a plurality of blocks, and outputs a sampling signal based on a pixel value of the selected pixel, and a reduced image generating unit that generates a reduced image on the basis of the sampling signal for each block output from the image sensor.
Abstract:
An imaging device includes imaging elements 12 arranged in two-dimensional matrix in a first direction and a second direction, an analog-digital (AD) converter 13, and a pixel signal reading device 16. The pixel signal reading device 16 selects spatially at random the imaging element 12 that outputs a pixel signal to the AD converter 13, and randomly outputs the pixel signal of the imaging element 12 from the AD converter 13.
Abstract:
A solid-state imaging device including pixel photododes on a light-receiving surface of a substrate; a first insulating film on the substrate covering a multilayer wiring on and in contact with the substrate. The first insulating film comprises material of a first refractive index lower than a refractive index of the substrate for at least bottom and top surface portions of the first insulating film. A second insulating film with a second refractive index higher than the first refractive index is on the first insulating film. A third insulating film with a third refractive index higher than the second refractive index is on the second insulating film. For each pixel, a color filter is on the third insulating film.
Abstract:
Disclosed herein is a presumably defective portion decision apparatus, including: an arithmetic operation section configured to divide a level difference included in level difference data which indicate a level difference distribution on the surface of a semiconductor device into two or more unit level differences in the depthwise direction of the level difference and determine, for each of the unit level differences obtained by the division, a relationship between the height of a contour line at a level difference position of an upper face and an area of an opening surrounded by the contour line to decide presence or absence of a presumably defective portion.
Abstract:
A solid-state imaging device includes: a semiconductor substrate having a light receiving surface sectioned for red, green, blue, and white pixels arranged in a matrix with photodiodes formed thereon; color filters formed on the semiconductor substrate in light incident paths to the photodiodes of the respective formation regions of the red, green, and blue pixels and respectively transmitting lights in red, green, and blue wavelength regions; and photochromic films formed on the semiconductor substrate in the light incident path to the photodiodes in the formation regions of at least some of the white pixels, and containing a photochromic material having light transmittance varying in response to incident light intensity in a predetermined wavelength region, wherein a half period of the light transmittance of the photochromic films is shorter than one frame as a period in which pixel signals obtained in the pixels are read out with respect to all pixels.
Abstract:
Disclosed herein is a solid-state imaging element including: a plurality of pixels including a photoelectric conversion section; and a nano-carbon laminated film disposed on a side of a light receiving surface of the photoelectric conversion section and formed with a plurality of nano-carbon layers, transmittance of light and a wavelength region of transmissible light changing in the nano-carbon laminated film according to a voltage applied to the nano-carbon laminated film.
Abstract:
A light control device according to the present disclosure includes: stacked M (provided that M≥1) light control layers 113M in each of which a first nanocarbon film 114, a first intermediate layer 117A, a dielectric material layer 116, and a second intermediate layer 117B are stacked; and a second nanocarbon film 115formed on the second intermediate layer 117B included in an M-th light control layer 113M. A voltage is applied to the first nanocarbon film 114 and the second nanocarbon film 115.
Abstract:
There is provided an optical modulator capable of electrically controlling intensity of transmitted light in a desired wavelength range at a high speed and reducing the size of a device containing the optical modulator. The optical modulator includes a first electrode; a second electrode; and a dielectric layer provided between the first and second electrodes. At least one of the first electrode and the second electrode comprises at least one layer of graphene. There are also provided an imaging device and a display apparatus each containing the optical modulator.
Abstract:
A solid-state imaging device includes: a semiconductor substrate including a light receiving surface which is divided according to pixels arranged in a matrix shape and is formed with a photoelectric converting section; an electrochromic film which is formed on the semiconductor substrate on a light incident path corresponding to the photoelectric converting section, in a portion of pixels selected from the pixels, and has light transmittance changing from a first transmittance to a second transmittance according to voltage applied thereto; a lower electrode which is formed below the electrochromic film; and an upper electrode which is formed above the electrochromic film.