Abstract:
A photoelectric conversion device of an embodiment of the technology includes: a first electrode and a second electrode facing each other; a photoelectric conversion layer provided between the first electrode and the second electrode; and a buffer layer provided between the first electrode and the photoelectric conversion layer, and having an interface, to which an organic molecule or a halogen element is coordinated, with the photoelectric conversion layer.
Abstract:
A light emitting device includes: a laminated body including a first-conductivity type semiconductor layer, a light emitting layer, and a second-conductivity type semiconductor layer in this order; a contact layer provided in contact with the second-conductivity type semiconductor layer at least at a peripheral edge of the second-conductivity type semiconductor layer; a first electrode electrically connected to the first-conductivity type semiconductor layer; a second electrode provided nearer to the first-conductivity type semiconductor layer than the second-conductivity type semiconductor layer; and a conductor electrically connecting the second electrode and the contact layer to each other.
Abstract:
A dispersion material includes: a plurality of semiconductor nanoparticles; and an adsorption molecule configured to selectively absorb light having a predetermined wavelength and adsorbed to each of the plurality of semiconductor nanoparticles, the adsorption molecule having a plane aligned to be non-parallel to a direction from a center portion of each of the plurality of semiconductor nanoparticles toward an adsorption portion of each of the plurality of semiconductor nanoparticles.
Abstract:
A semiconductor nanoparticle dispersion is provided. The semiconductor nanoparticle including a plurality of semiconductor nanoparticles having a radius equal to or larger than an exciton Bohr radius; and a solvent dispersed with the plurality of semiconductor nanoparticles.
Abstract:
A light emitting device includes: a laminated body including a first-conductivity type semiconductor layer, a light emitting layer, and a second-conductivity type semiconductor layer in this order; a contact layer provided in contact with the second-conductivity type semiconductor layer at least at a peripheral edge of the second-conductivity type semiconductor layer; a first electrode electrically connected to the first-conductivity type semiconductor layer; a second electrode provided nearer to the first-conductivity type semiconductor layer than the second-conductivity type semiconductor layer; and a conductor electrically connecting the second electrode and the contact layer to each other.
Abstract:
To provide a semiconductor film capable of realizing further enhancement of photoelectric conversion efficiency. The semiconductor film includes semiconductor nanoparticles and a compound represented by the following general formula (1), in which the compound represented by the general formula (1) is coordinated to the semiconductor nanoparticles.
(In the general formula (1), X represents —SH, —COOH, —NH2, —PO(OH)2, or —SO2(OH), A1 represents —S, —COO, —PO(OH)O, or —SO2(O), and n is an integer of 1 to 3. B1 represents Li, Na, or K.)
Abstract:
A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode including a plurality of electrodes independent from each other; a second electrode disposed to be opposed to the first electrode; an n-type photoelectric conversion layer including a semiconductor nanoparticle, the n-type photoelectric conversion layer being provided between the first electrode and the second electrode; and a semiconductor layer including an oxide semiconductor material, the semiconductor layer being provided between the first electrode and the n-type photoelectric conversion layer.
Abstract:
A light emitting element includes: a laminated body including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer in this order, the second conductive semiconductor layer having a light extraction surface; and a recombination suppression structure provided in vicinity of an end surface of the active layer, the recombination suppression structure having a bandgap larger than a bandgap of the active layer.
Abstract:
A semiconductor nanoparticle dispersion is provided. The semiconductor nanoparticle including a plurality of semiconductor nanoparticles having a radius equal to or larger than an exciton Bohr radius; and a solvent dispersed with the plurality of semiconductor nanoparticles.
Abstract:
A method for manufacturing a light-emitting diode, which includes the steps of: providing a substrate having a plurality of protruded portions on one main surface thereof wherein the protruded portion is made of a material different in type from that of the substrate and growing a first nitride-based III-V Group compound semiconductor layer on each recess portion of the substrate through a state of making a triangle in section wherein a bottom surface of the recess portion becomes a base of the triangle; laterally growing a second nitride-based III-V Group compound semiconductor layer on the substrate from the first nitride-based III-V Group compound semiconductor layer; and successively growing, on the second nitride-based III-V Group compound semiconductor layer, a third nitride-based III-V Group compound semiconductor layer of a first conduction type, an active layer, and a fourth nitride-based III-V compound semiconductor layer of a second conduction type.