摘要:
A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack having a first dielectric layer over the channel region, a second dielectric layer over the first dielectric layer, a first diffusion barrier layer over the second dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second diffusion barrier layer over the first electrically conductive layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
摘要:
A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack. The gate stack may include a first dielectric layer over the channel region, a first diffusion barrier layer over the first dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second dielectric layer over the first electrically conductive layer, a second diffusion barrier layer over the second dielectric layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
摘要:
A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack. The gate stack may include a first dielectric layer over the channel region, a first diffusion barrier layer over the first dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second dielectric layer over the first electrically conductive layer, a second diffusion barrier layer over the second dielectric layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
摘要:
A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack having a first dielectric layer over the channel region, a second dielectric layer over the first dielectric layer, a first diffusion barrier layer over the second dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second diffusion barrier layer over the first electrically conductive layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
摘要:
Semiconductor devices and methods of forming the same include forming a bottom source/drain structure around a fin. A multi-layer bottom spacer is formed on the bottom source/drain structure, around the fin. Each layer of the multi-layer bottom spacer has a respective vertical height above the bottom source/drain structure, with a layer of the multi-layer bottom spacer that is farthest from the fin having a greater vertical height than a layer that is closest to the fin, to address parasitic capacitance from the bottom source/drain structure.
摘要:
Embodiments of present invention provide a transistor structure. The transistor structure includes a first vertical fin of a first vertical transistor, the first vertical fin having a first and a second sidewall and a first and a second vertical end; a first bottom source/drain (S/D) region underneath the first vertical fin, wherein the first bottom S/D region having an edge that vertically aligns with the first vertical end of the first vertical fin; and a first gate stack surrounding the first vertical fin, wherein the first bottom S/D region horizontally extends beyond the first vertical fin, except at the edge of the first bottom S/D region that vertically aligns with the first vertical end of the first vertical fin, to have at least a portion vertically underneath the first gate stack. A method of manufacturing the transistor structure is also provided.
摘要:
Embodiments of present invention provide a method of forming a transistor structure. The method includes forming a set of vertical fins on top of a substrate; forming a conformal spacer lining the set of vertical fins and the substrate; forming sidewall spacers next to vertical portions of the conformal spacer; removing portions of the conformal spacer on top of the substrate and between the sidewall spacers; indenting the conformal spacer vertically between the sidewall spacers and the substrate to create openings; forming bottom spacers in the openings; and forming a shallow-trench-isolation (STI) structure between the bottom spacers. A structure formed thereby is also provided.
摘要:
A semiconductor device includes a first diffusion region having a first conductivity type, a first SiGe fin formed on the first diffusion region, a second diffusion region having a second conductivity type, and a second SiGe fin formed on the second diffusion region and including a central portion including a first amount of Ge, and a surface portion including a second amount of Ge which is greater than the first amount. A total width of the central portion and the surface portion is substantially equal to a width of the second diffusion region.
摘要:
A method includes forming a p-type field effect transistor region and an n-type field effect transistor region into a semiconductor substrate. The method implements a process flow to fabricate highly doped top source/drains with minimal lithography and etching processes. The method permits the formation of VFETs with increased functionality and reduced scaling.
摘要:
A method includes forming a p-type field effect transistor region and an n-type field effect transistor region into a semiconductor substrate. The method implements a process flow to fabricate highly doped top source/drains with minimal lithography and etching processes. The method permits the formation of VFETs with increased functionality and reduced scaling.