Abstract:
The present invention provides a method for capturing specific cells (e.g. many types of cancer cells, including cancer cells not expressing EpCAM), and a method for analysis of specific cells involving the method. Included is a method for capturing specific cells present in blood or biological fluid, the method including: agglutinating blood cells in sampled blood or biological fluid; centrifuging the resulting blood or biological fluid; and then capturing specific cells therefrom onto a hydrophilic polymer layer.
Abstract:
Provided are surface-modified metals and methods for modifying a metal surface, which involve a lubricating surface layer chemically fixed to the metal surface to provide excellent lubricity and excellent lubricant durability, and further which have good productivity and good economic efficiency. Included is a surface-modified metal whose surface is at least partially provided with a treatment layer having a thickness of 50 to 800 nm, the treatment layer being formed by treating a surface of a metal with a silane coupling agent, followed by adsorbing a hydrogen abstraction type photopolymerization initiator onto the surface and then polymerizing a monomer.
Abstract:
The present invention provides a hydrophilic substrate including a hydrophilic polymer layer having a smooth surface and formed of a special polymer (hydrophilic polymer). Included is a hydrophilic substrate including on its surface a hydrophilic polymer layer formed of a hydrophilic polymer having a number average molecular weight of 40,000 or more.
Abstract:
Provided are surface-modified metals such as metal medical devices, e.g. guide wires, syringe needles, and metal tubes in medical devices or equipment, and methods for modifying a metal surface, wherein a lubricant layer is firmly bonded to the metal surface to impart lubricity to the metal surface and further to improve the durability of the lubricant layer on the metal surface, thereby suppressing deterioration of the sliding properties. Included is a surface-modified metal at least partially having a treated surface, the treated surface being obtained by treating a surface of a metal with a silane coupling agent, followed by adsorbing a hydrogen abstraction type photopolymerization initiator onto the surface and then polymerizing a monomer in the presence of an alkali metal salt.
Abstract:
The present invention aims to provide a method for surface-modifying a rubber vulcanizate or a thermoplastic elastomer, which is capable of cost-effectively imparting a variety of functions, such as sliding properties and biocompatibility, according to the applications. The present invention relates to a surface modification method for surface-modifying an object of a rubber vulcanizate or a thermoplastic elastomer, the method including: step 1 of forming polymerization initiation points A on a surface of the object; step 2 of radically polymerizing a non-functional monomer, starting from the polymerization initiation points A, to grow non-functional polymer chains; step 3 of forming polymerization initiation points B on the surface of the object where the non-functional polymer chains are formed; and step 4 of radically polymerizing a functional monomer, starting from the polymerization initiation points B, to grow functional polymer chains.
Abstract:
A method for predicting the resistance to heat deterioration of a sulfur-vulcanized isoprene rubber is disclosed. The nuclear magnetic resonance spectrum of the isoprene rubber is obtained by the use of a solid state nuclear magnetic resonance method employing magic angle spinning. The spectrum of a cross-linked structure α and the spectrum of a cross-linked structure β in the nuclear magnetic resonance spectrum are identified. The percentage of the cross-linked structure α and the percentage of the cross-linked structure β in the overall cross-linked structures of the sulfur are computed from the spectrum. From the computed percentages, the resistance to heat deterioration of the isoprene rubber is predicted.
Abstract:
Provided are: surface modification method for imparting slidability to surface of elastic body such as vulcanized rubber or thermoplastic elastomer without using expensive self-lubricating resin; surface-modified elastic body with polymer brush formed on its surface; and gasket for injector and injector formed of surface-modified elastic body. The surface modification method applies to surface of thermoplastic elastomer or vulcanized rubber. The surface modification method comprises the step of forming hydroxyl group on surface of to-be-modified object such as rubber so that water contact angle of the surface becomes 8 to 50 degrees smaller than original water contact angle in unmodified condition, the step of forming polymerization initiation site by subjecting the hydroxyl group to action of secondary or tertiary organic halide, and the step of growing polymer brush on the surface of to-be-modified object by subjecting monomer to radical polymerization at the polymerization initiation site acting as a point of initiation.
Abstract:
The present invention aims to provide methods for surface-modifying a rubber vulcanizate or a thermoplastic elastomer, which can cost-effectively impart a variety of functions, such as sliding properties or biocompatibility, according to the application. The present invention relates to a method for surface-modifying an object of a rubber vulcanizate or a thermoplastic elastomer, the method including: step 1 of forming polymerization initiation points A on the surface of the object; and step 2 of radically polymerizing a non-functional monomer, starting from the polymerization initiation points A, to grow non-functional polymer chains, and further radically polymerizing a fluorine-containing functional monomer to grow fluorine-containing functional polymer chains.
Abstract:
An object of the present disclosure is to provide a new sulfur-based positive-electrode active material which can improve cyclability of a lithium-ion secondary battery while maintaining a charging and discharging capacity, a positive-electrode comprising the positive-electrode active material, and a lithium-ion secondary battery comprising the positive-electrode. The sulfur-based positive-electrode active material is one comprising doped nitrogen atoms obtainable by heat-treating a starting material comprising a chain organic compound and sulfur under an atmosphere of a nitrogen atom-doping gas.
Abstract:
Provided are a medical analysis device and a cell analysis method which can capture many cancer cells, including cancer cells not expressing EpCAM. The medical analysis device includes a flow channel zone, and also includes a chamber zone. The inner surface of the flow channel zone is at least partially provided with a layer of a hydrophilic polymer having a thickness of 2 to 200 nm.