Abstract:
A display substrate may include a substrate and a wiring on the substrate. The wiring may include a metal oxide layer including at least one oxide selected from tantalum (Ta), niobium (Nb), and titanium (Ti), and a metal layer on the metal oxide layer and including copper (Cu), and a thickness of the metal oxide layer may be in a range of about 30 angstroms (Å) to about 50 Å.
Abstract:
An oxide semiconductor depositing apparatus includes a heating chamber which is configured to heat and plasma-treat a first substrate including an insulation layer, and includes a chamber body, a heater disposed in the chamber body which is configured to heat the first substrate, and a cathode plate spaced apart from the heater, a high frequency voltage applied to the cathode plate, and a first process chamber which is configured to provide an oxide semiconductor layer on the insulation layer of the first substrate.
Abstract:
A semiconductor device may include a substrate, a gate electrode disposed on the substrate, a gate insulation layer disposed on the substrate to cover the gate electrode, an active layer including an oxide semiconductor disposed on the gate insulation layer, an insulating interlayer disposed on the gate insulation layer to cover the active layer, a protection structure including a plurality of metal oxide layers disposed on the insulating interlayer, and a source electrode and a drain electrode disposed on the protection structure.
Abstract:
A thin film transistor substrate includes a base substrate and a thin film transistor. The base substrate includes a gate line and a data line. The thin film transistor is connected to the gate line and the data line. The thin film transistor includes a gate electrode, a semiconductor pattern and source, drain electrodes. The gate electrode is disposed on the base substrate. The semiconductor pattern overlaps with the gate electrode. The source, drain electrodes is spaced apart from each other. The source electrode includes a first source layer, a second source layer disposed on the first source layer and a first diffusion barrier disposed between the first source layer and second source layer. The drain electrode includes a first drain layer, a second drain layer disposed on the first drain layer and a second diffusion barrier disposed between the first drain layer and second drain layer.
Abstract:
A sputtering apparatus includes a chamber, a plate disposed inside the chamber, a target unit including at least one targer facing the plate, a power supply unit coupled to the target, and a filter unit disposed between the substrate and the target. The filter unit includes at least one filter. A substrate is disposed on the plate. The filter unit may include a first filter and a second filter with the first filter disposed between the target and the second filter.
Abstract:
In a method of manufacturing a thin film transistor substrate, a first metal layer is formed on a first surface of a base substrate. The base substrate is cooled by contacting the first metal layer with a first cooling plate and by contacting a second surface of the base substrate with a second cooling plate. The first and second surfaces of the base substrate face opposite directions. A gate electrode is formed by patterning the first metal layer. A source electrode and a drain electrode are formed. The source electrode is spaced apart from the drain electrode. The source and drain electrodes partially overlap the gate electrode. A pixel electrode electrically connected to the drain electrode is formed.
Abstract:
In a thin-film transistor (“TFT”) substrate and a method of manufacturing a TFT substrate, the TFT substrate includes a base substrate, a gate pattern, a source pattern and a pixel electrode. One of the gate pattern and the source pattern includes a pure copper layer, and a conductive layer under the pure copper layer. The conductive layer includes a copper alloy oxide, a copper alloy nitride or a copper alloy oxynitride.