Abstract:
Disclosed are a measuring apparatus and a substrate analysis method using the same. The measuring apparatus includes a light source that generates a laser beam, a beam splitter that splits the laser beam into a probe laser beam and a reference laser beam, an antenna that receives the probe laser beam to produce a terahertz beam, an electro-optical device that receives the reference laser beam and the terahertz beam to change a vertical polarization component and a horizontal polarization component of the reference laser beam, based on intensity of the terahertz beam, and a streak camera that obtains a time-domain signal corresponding to a ratio between the vertical polarization component and the horizontal polarization component.
Abstract:
A method of measuring misalignment of chips, a method of fabricating a fan-out panel level package using the same, and a fan-out panel level package fabricated thereby are provided. The measuring method may include obtaining images by scanning chips on a substrate, obtaining absolute offsets of reference chips with respect to the substrate in the images, obtaining relative offsets of subordinate chips with respect to the reference chips in the images, and calculating misalignments of the chips based on the absolute offsets and the relative offsets.
Abstract:
Disclosed are methods of inspecting semiconductor wafers, inspection systems for performing the same, and methods of fabricating semiconductor devices using the same. A method of inspecting a semiconductor wafer including preparing a wafer including zones each having patterns, obtaining representative values for the patterns, scanning the patterns under an optical condition to obtain optical signals for the patterns, each of the optical signals including optical parameters, selecting a representative optical parameter that is one of the optical parameters that has a correlation with the representative values, obtaining a reference value of the representative optical parameter for a reference pattern, and obtaining a defect of an inspection pattern by comparing the reference value with an inspection value of the representative optical parameter for the inspection pattern.
Abstract:
Disclosed are apparatuses and methods for measuring a thickness. The apparatus for measuring a thickness including a light source that emits a femto-second laser, an optical coupler through which a portion of the femto-second laser is incident onto a target and other portion of the femto-second laser is incident onto a reference mirror, a detector configured to receive a reflection signal reflected on the reference mirror and a sample signal generated from the target and configured to measure a thickness of the target based on an interference signal between the reflection signal and the sample signal, and a plurality of optical fiber lines configured to connect the light source, the optical coupler, and the detector to each other may be provided.
Abstract:
A method of fabricating a package includes providing a mold substrate supporting dies in cavities of a fan-out substrate, detecting positions of the dies with respect to the fan-out substrate, and forming interconnection lines. At least one of the interconnection lines includes a first portion extending from the fan-out substrate to a target position on the cavity disposed between the fan-out substrate and one of the dies the one of the dies disposed at a detected position different from the target position, and a second portion extending from the one die to the fan-out substrate.
Abstract:
An inspection method includes generating first layout data including information on a shape of a first pattern group, generating second layout data including information on a shape of a second pattern group, obtaining a target image including images of the first and second pattern groups, and detecting a defect pattern from the target image by comparing the first and second layout data with the target image. The first pattern group, the second pattern group, and the defect pattern are provided at different heights from each other, from a top surface of a substrate.
Abstract:
A method of inspecting a semiconductor device includes providing a substrate, on which a mold layer with a plurality of mold openings is provided, milling the mold layer in a direction inclined at a predetermined angle with respect to a direction normal to a top surface of the substrate, such that an inclined cutting surface exposing milled mold openings is formed, the milled mold openings including first milling openings along a first column extending in a first direction and having different heights, obtaining image data of the cutting surface, the image data including first contour images of the first milling openings, and obtaining a first process parameter, which represents an extent of bending of the mold openings according to a distance from a top surface of the substrate, using positions of center points of the first contour images.
Abstract:
A method includes loading a substrate into a sensing chamber; while the substrate is in the sensing chamber, performing a spectral analysis of the substrate; transferring the substrate between the sensing chamber and a processing chamber coupled to the sensing chamber; processing the substrate in the processing chamber to form at least a first layer and/or pattern on the substrate; and based on at least the spectral analysis, determining whether a parameter resulting from the formation of first layer and/or pattern is satisfied.
Abstract:
A test apparatus includes a movable stage to support a sample, tips above the stage that have different shapes and alternately perform profiling and milling on the sample, a tip stage connected to a cantilever coupled to the tips, the tip stage to adjust a position of the cantilever, a position sensor to obtain information about a positional relationship between the tips and the sample, a stage controller to control movements of the stage and the tip stage, based on the information about the positional relationship, and a tip controller to select the tips for performing the profiling or milling and to determine conditions for performing milling, wherein a depth of the sample being processed by the milling in the first direction is controlled based on a relationship between a distance between the tips and the sample and a force between the tips and the sample.
Abstract:
A substrate inspection device including a light source, a polarizer, first and second compensators, an analyzer, a light splitter configured to receive reflected light reflected by the substrate to split the reflected light into first split light and second split light, a first detector and a second detector configured to detect the first split light and the second split light, respectively, and a controller configured to control the first and second detectors differently from each other, may be provided.