Abstract:
Provided are a micro mirror device capable of realizing color images without a color wheel by selectively reflecting color beams using a plurality of micro mirrors whose driving axes are positioned in different directions, and a projector employing the same. The micro mirror device can individually control a plurality of micro mirrors, the micro mirror device comprising a plurality of micro mirror units having micro mirrors whose driving axes are positioned at predetermined different angles, the micro mirror units for reflecting light incident in different directions. Also, the projector includes a light source for illuminating light; a light separation unit for separating light generated by the light source into several beams according to wavelength regions, and for reflecting or projecting the beams at different angles; a micro mirror device including a plurality of micro mirror units which are composed of a plurality of micro mirrors whose driving axes are respectively positioned at different predetermined angles, the micro mirror device for realizing an image by selectively reflecting the beams, which are passing through the light separation unit, in a predetermined direction and at a predetermined angle; and a projection lens unit for magnifying and projecting light generated by the micro mirror device toward a screen.
Abstract:
A micromirror driver for simultaneously and independently controlling a resonant frequency and an amplitude of a micromirror. A micromirror having a plurality of grooves is supported in rotation by an elastic body. Base electrodes having a comb shape are affixed to the grooves and along an edge of the micromirror. A plurality of driver electrodes also having a comb shape are respectively engaged with the base electrodes in a gear like arrangement to electrostatically interact with the micromirror in response to applied voltages. An amplitude and a frequency of the micromirror are controlled by varying a magnitude or a waveform of one or more electrode voltages or by varying a phase between voltages applied to at least two electrodes. Accordingly, greater driving forces, a larger rotation angle of the micromirror, and independent control of amplitude and resonant frequency of the micromirror are obtained.
Abstract:
The micro-mechanical structure includes an anti-stiction layer formed by plasma enhanced chemical vapor deposition and plasma etching. The anti-stiction layer is selectively formed on only the area of a substrate other than the top of a movable structure and a part of an electrode that is subsequently bonded to a wire.
Abstract:
A micro mirror device having a micro mirror that can slant with regard a plurality of rotation axes, and a projector employing such a micro mirror device, are provided. This micro mirror device includes a substrate; a plurality of address electrodes formed on the substrate, and a bias electrode for making the micro mirrors slant with regard to a plurality of rotation axes, together with the address electrodes; and a holding plate including a central portion for supporting a second post that supports the micro mirrors and at least one spring hinges transforming elastically when the micro mirrors slant with regard to the rotation axes, the holding plate held by first posts of predetermined numbers which are formed on the bias electrode. The projector includes a light source for illuminating light; a light separator for branching light output from the light source into several beams according to a wavelength region, and reflecting or transmitting the beams at different angles; a micro mirror device for forming an image by rotating a micro mirror, which slants with regard to a plurality of rotation axes, in a predetermined direction or at a predetermined angle, and by selectively reflecting the beams separated from the light separator; and a projection lens unit for magnifying and transmitting beams output from the micro mirror device, so that the beams travel toward a screen.
Abstract:
A hermetic sealing method, which is capable of preventing oxidation of a micro-electromechanical system (MEMS) and sealing the MEMS at a low temperature. A low temperature hermetic sealing method having a passivation layer includes depositing a junction layer, a wetting layer, and a solder layer on a prepared lid frame, depositing a first protection layer for preventing oxidation on the solder layer and forming a lid, preparing a package base on which a device is disposed, and in which a metal layer and a second protection layer are formed around the device, and assembling the lid and the package base, heating, and sealing them. The protection layer is laminated on the solder layer that is formed by the lid, thereby preventing oxidation without using a flux. The low temperature hermetic sealing method having a passivation layer is suitable for sealing a device, such as the MEMS, which is sensitive to heat, water and other by-products.
Abstract:
The micro-mechanical structure includes an anti-stiction layer formed by plasma enhanced chemical vapor deposition. The anti-stiction layer is formed on only the area of a substrate other than the top of a movable structure and a part of an electrode that is subsequently bonded to a wire.
Abstract:
A device that is hermetically sealed at a wafer level or a method of hermetically sealing a device, which is sensitive to high temperatures or affected by heating cycles. Semiconductor devices are formed on a wafer. A lid wafer is formed. Adhesives are formed in a predetermined position over the wafer and/or the lid wafer. The wafer and the lid wafer are sealed by the adhesives at the wafer level. The sealing may be performed at a low temperature using a solder to protect the devices sensitive to heat. The sealed devices are diced into individual chips. In the wafer level hermetic sealing method, a sawing operation is performed after the devices are sealed. Therefore, the overall processing time is reduced, devices are protected from the effects of moisture or particles, and devices having a moving structure, such as MEMS devices, are more easily handled.