Abstract:
An integrated circuit device includes an electrically conductive pattern on a substrate. This electrically conductive pattern may be a gate pattern of a field effect transistor. A first electrically insulating spacer is provided on a sidewall of the electrically conductive pattern. The first electrically insulating spacer includes a first lower spacer and a first upper spacer, which extends on the first lower spacer and has a side surface vertically aligned with a corresponding side surface of the first lower spacer. The first upper spacer has a greater dielectric constant relative to a dielectric constant of the first lower spacer. A pair of parallel channel regions may also be provided, which protrude from a surface of the substrate. The electrically conductive pattern may surround top and side surfaces of the pair of parallel channel regions.
Abstract:
A semiconductor device includes a substrate, a first active fin and a second active fin on the substrate, respectively, a plurality of first epitaxial layers on the first active fin and on the second active fin, respectively, a plurality of second epitaxial layers on the plurality of first epitaxial layers, a bridge layer connecting the plurality of second epitaxial layers to each other, and a third epitaxial layer on the bridge layer.
Abstract:
A method of fabricating a semiconductor device is provided. A plurality of first gate electrode structure is formed on a substrate. A recess is formed in the substrate, wherein the recess is formed between two adjacent first gate electrode structures of the plurality of first gate electrode structure. A diffusion prevention layer includes a first material and is formed on the recess of the substrate. A first pre-silicide layer includes a second material different from the first material and is formed on the diffusion prevention layer. A metal layer is formed on the first pre-silicide layer. The first pre-silicide layer and the metal layer are changed to a first silicide layer by performing an annealing process to the substrate. The diffusion prevention layer prevents metal atoms of the metal layer from diffusing to the substrate, and the first silicide layer comprises a monocrystalline layer.
Abstract:
A semiconductor device includes a substrate, a first active fin and a second active fin on the substrate, respectively, a plurality of first epitaxial layers on the first active fin and on the second active fin, respectively, a plurality of second epitaxial layers on the plurality of first epitaxial layers, a bridge layer connecting the plurality of second epitaxial layers to each other, and a third epitaxial layer on the bridge layer.
Abstract:
A method for fabricating a semiconductor device is provided. A first gate pattern and a second gate pattern are adjacent to each other and are formed on an active region of a substrate. The active region is defined by an isolation film. A first recess is formed between the first gate pattern and the second gate pattern. A first sacrificial film pattern is formed on a bottom surface of the first recess using a directional deposition process. A second recess is formed by etching the first recess using the first sacrificial film pattern as a etch mask. The first recess is laterally extended to form the second recess.
Abstract:
A semiconductor device is provided. An active fin protrudes from a substrate. A gate structure is formed on the substrate and the active fin. The gate structure extends in a first direction. The gate structure crosses a first region of the active fin in a second direction. A first epitaxial layer is formed on a second region of the active fin. The second region of the active fin is not covered with the gate structure. A second epitaxial layer is formed on the first epitaxial layer, the second epitaxial layer including an impurity. The first epitaxial layer includes a blocking material. The blocking material of the first epitaxial layer prevents the impurity of the second epitaxial layer from passing through the first epitaxial layer to block diffusion of the impurity to a channel region formed in the first region of the active fin.
Abstract:
A gate pattern is formed on a first region of a substrate. An epitaxial layer is formed on a second region of the substrate. A recess is formed in the second region of the substrate by etching the epitaxial layer and the substrate underneath. The first region is adjacent to the second region.
Abstract:
To fabricate a semiconductor device, a fin is formed to protrude from a substrate. The fin is extended in a first direction. A gate line is formed on the fin and the substrate. The gate line is extended in a second direction crossing the first direction. An amorphous material layer is conformally formed to cover the substrate, the fin, and the gate line. The amorphous material layer is partially removed, thereby forming a first remaining amorphous layer on side walls of the fin and a second remaining amorphous layer on side walls of the gate line. The first remaining amorphous layer and the second remaining amorphous layer are annealed and the first remaining amorphous material layer and the second remaining amorphous material layer are crystallized into a monocrystalline material layer and a polycrystalline material layer, respectively. The polycrystalline material layer is removed.
Abstract:
A semiconductor device may include a first active fin, a plurality of second active fins, a first source/drain layer structure, and a second source/drain layer structure. The first active fin may be on a first region of a substrate. The second active fins may be on a second region of the substrate. The first and second gate structures may be on the first and second active fins, respectively. The first source/drain layer structure may be on a portion of the first active fin that is adjacent to the first gate structure. The second source/drain layer structure may commonly contact upper surfaces of the second active fins adjacent to the second gate structure. A top surface of the second source/drain layer structure may be further from the surface of the substrate than a top surface of the first source/drain layer structure is to the surface of the substrate.
Abstract:
A semiconductor device may include a first active fin, a plurality of second active fins, a first source/drain layer structure, and a second source/drain layer structure. The first active fin may be on a first region of a substrate. The second active fins may be on a second region of the substrate. The first and second gate structures may be on the first and second active fins, respectively. The first source/drain layer structure may be on a portion of the first active fin that is adjacent to the first gate structure. The second source/drain layer structure may commonly contact upper surfaces of the second active fins adjacent to the second gate structure. A top surface of the second source/drain layer structure may be further from the surface of the substrate than a top surface of the first source/drain layer structure is to the surface of the substrate.