Abstract:
According to various embodiments, provided is an electrical element transfer apparatus comprising: a fixing jig in which each of a plurality of electrical elements is arranged at a predetermined interval; a movement jig movably arranged at an upper part of the fixing jig, and including a plurality of first accommodating grooves for accommodating at least a part of each of the plurality of electrical elements; and an attraction device arranged around the movable jig and attaching each of the plurality of electrical elements through the movable jig to the first accommodating groove of the movable jig through magnetic force. Additional various embodiments are possible.
Abstract:
A test board and a test apparatus having the same are disclosed. The test board includes a base plate including a connector and a plurality of mounting areas in a matrix shape having a mounting row in a first direction and a mounting column in a second direction, a plurality of test units arranged on the mounting areas of the base plate and a test object is mounted in each of the mounting areas, and a fluid supplier disposed on the base plate and supplying a test fluid to each of the test units having a test temperature and a supplementary fluid to the test object to reduce a temperature difference between an actual temperature of the test object and the test temperature such that the actual temperature of the test objects is substantially below the test temperature.
Abstract:
A substrate manufacturing apparatus includes a test apparatus including a test handler module for performing a test process on a substrate. The test handler module may include a conveyor unit to transfer a substrate, a handler unit for performing a test process on the substrate, and a transfer unit for transferring the substrate between the conveyor unit and the handler unit. The conveyor unit may include a feed conveyor and a discharge conveyor spaced apart from the feed conveyor.
Abstract:
A substrate manufacturing apparatus includes a test apparatus including a test handler module for performing a test process on a substrate. The test handler module may include a conveyor unit to transfer a substrate, a handler unit for performing a test process on the substrate, and a transfer unit for transferring the substrate between the conveyor unit and the handler unit. The conveyor unit may include a feed conveyor and a discharge conveyor spaced apart from the feed conveyor.
Abstract:
The disclosure describes a micro Light Emitting Diode (LED) display. The display may include a Printed Circuit Board (PCB) including a plurality of solder pads, a micro LED package including a plurality of micro LED chips, and a plurality of solder electrodes which bond the micro LED chips onto the solder pads of the PCB. The micro LED package may be re-arranged in an Red Green Blue (RGB) state on a temporary fixing film by using a pickup device in accordance with a display pixel configuration, after the micro LED chips are attached to a carrier film.
Abstract:
According to certain embodiments of the disclosure, an electronic device may include a housing, a window frame disposed in the housing and providing at least one opening exposing an inside of the housing to an outside of the housing, at least one window coupled to the window frame to close the at least one opening, and at least one optical module disposed inside the housing and configured to receive external light incident through the at least one window. The at least one window may include an inner surface facing the inside of the housing, a side surface facing an inner wall of the at least one opening, and a first inclined surface connecting the side surface to the inner surface. The first inclined surface may be inclined with respect to the inner surface and the side surface and may be bonded to the inner wall. Other various embodiments are possible as well.
Abstract:
A test board and a test apparatus having the same are disclosed. The test board includes a base plate including a connector and a plurality of mounting areas in a matrix shape having a mounting row in a first direction and a mounting column in a second direction, a plurality of test units arranged on the mounting areas of the base plate and a test object is mounted in each of the mounting areas, and a fluid supplier disposed on the base plate and supplying a test fluid to each of the test units having a test temperature and a supplementary fluid to the test object to reduce a temperature difference between an actual temperature of the test object and the test temperature such that the actual temperature of the test objects is substantially below the test temperature.
Abstract:
A test socket has a housing with an inlet configured to receive a substrate. A plurality of terminals are coupled to the housing, and a plurality of sliding pins are coupled to the terminals. The pins are configured to make contact with respective pads or terminals of the substrate to be tested. The pins have different lengths or positions to send and receive test signals.