Abstract:
A photosensitive resin composition includes: (A) a binder resin; (B) a photopolymerizable monomer; (C) a photopolymerization initiator; (D) a quantum dot surface-modified with a compound having a thiol group at one terminal end and an alkoxy group, a cycloalkyl group, a carboxyl group, or a hydroxy group at the other terminal end; and (E) a solvent. A curable composition includes: (A′) a resin; (B′) a quantum dot surface-modified with a compound represented by Chemical Formula 1 or Chemical Formula 2; and (C′) a solvent. A method of manufacturing the surface-modified quantum dot, and a color filter manufactured using the photosensitive resin composition or the curable composition are also disclosed.
Abstract:
A photosensitive resin composition for producing a photosensitive resin film is provided, along with the manufactured photosensitive resin film and a color filter including the photosensitive resin layer. The photosensitive resin composition includes: (A) a quantum dot; (B) a binder resin having a weight average molecular weight of about 2,000 g/mol to about 12,000 g/mol; (C) a photopolymerizable monomer; (D) a photopolymerization initiator; and (E) a solvent.
Abstract:
A semiconductor device connected by an anisotropic conductive film including a first insulation layer, a conductive layer, and a second insulation layer one above another, wherein the conductive layer has an expansion length of 20% or less in a width direction thereof, and the second insulation layer has an expansion length of 50% or more in a width direction thereof, the expansion length is calculated according to Equation 1, below, after glass substrates are placed on upper and lower sides of the anisotropic conductive film respectively, followed by compression at 110° C. to 200° C. for 3 to 7 seconds under a load of 1 MPa to 7 MPa per unit area of a sample, Increased ratio of expansion length (%)=[(length of corresponding layer in width direction after compression−length of corresponding layer in width direction before compression)/length of corresponding layer in width direction before compression]×100. [Equation 1]