摘要:
An alternating stack of insulating layers and sacrificial material layers can be formed over a substrate. Memory stack structures and a backside trench are formed through the alternating stack. Backside recesses are formed by removing the sacrificial material layers from the backside trench selective to the insulating layers. A cobalt-containing material is deposited such that the cobalt-containing material continuously extends at least between a neighboring pair of cobalt-containing material portions in respective backside recesses. An anneal is performed at an elevated temperature to migrate vertically-extending portions of the cobalt-containing material into the backside recesses, thereby forming vertically separated cobalt-containing material portions confined within the backside recesses. Sidewalls of the insulating layers may be rounded or tapered to facilitate migration of the cobalt-containing material.
摘要:
A memory film and a semiconductor channel can be formed within each memory opening that extends through a stack including an alternating plurality of insulator layers and sacrificial material layers. After formation of backside recesses through removal of the sacrificial material layers selective to the insulator layers, a ruthenium portion can be formed in each backside recess, and a polycrystalline conductive material portion can be formed on each ruthenium portion. Each ruthenium portion can be employed in lieu of a tungsten seed layer to function as a lower resistivity seed layer that enables subsequent deposition of a polycrystalline conductive material. The resulting electrically conductive lines can have a lower resistivity than conductive lines of comparable dimensions that employ tungsten seed layers.
摘要:
A first blocking dielectric layer is formed in a memory opening through a stack of an alternating plurality of material layers and insulator layers. A spacer with a bottom opening is formed over the first blocking dielectric layer by deposition of a conformal material layer and an anisotropic etch. A horizontal portion of the first blocking dielectric layer at a bottom of the memory opening can be etched by an isotropic etch process that minimizes overetch into the substrate. An optional additional blocking dielectric layer, at least one charge storage element, a tunneling dielectric, and a semiconductor channel can be sequentially formed in the memory opening to provide a three-dimensional memory stack.
摘要:
Fluorine-induced formation of voids and electrical shorts can be avoided by forming fluorine-free metal lines. Specifically, control gate electrodes of a three-dimensional memory device can be formed employing fluorine-free deposition processes. Fluorine-free tungsten nitride can be deposited as a metallic barrier liner employing atomic layer deposition. Fluorine-free tungsten nucleation layer can be subsequently deposited. Fluorine-free tungsten fill process can be employed to form the control gate electrodes. The fluorine-free control gate electrodes do not include fluorine therein, and thus, circumvents yield and reliability issues associated with residual fluorine that are present in fluorine-containing metal lines.
摘要:
A memory film and a semiconductor channel can be formed within each memory opening that extends through a stack including an alternating plurality of insulator layers and sacrificial material layers. After formation of backside recesses through removal of the sacrificial material layers selective to the insulator layers, a metallic barrier material portion can be formed in each backside recess. A cobalt portion can be formed in each backside recess. Each backside recess can be filled with a cobalt portion alone, or can be filled with a combination of a cobalt portion and a metallic material portion including a material other than cobalt.
摘要:
An alternating stack of insulating layers and sacrificial material layers can be formed over a substrate. Memory stack structures and a backside trench are formed through the alternating stack. Backside recesses are formed by removing the sacrificial material layers from the backside trench selective to the insulating layers. A cobalt-semiconductor alloy portion is formed in each backside recess by reacting cobalt and a semiconductor material. Conductive material in the backside trench can be removed by an etch to electrically isolate cobalt-containing alloy portions located in different backside recesses. Electrically conductive layers including a respective cobalt-semiconductor alloy portion can be employed as word lines of a three-dimensional memory device.
摘要:
Blocking dielectric structures and/or thicker barrier metal films for preventing or reducing fluorine diffusion are provided. A blocking dielectric layer can be formed as an outer layer of a memory film in a memory stack structure extending through electrically insulating layers and sacrificial material layers. After formation of backside recesses by removal of the sacrificial material layers, dopants can be introduced into physically exposed portions of the blocking dielectric layer, for example, by plasma treatment or thermal treatment, to form silicon oxynitride regions which can reduce or prevent fluorine diffusion. Alternatively or additionally, a set of metal oxide blocking dielectric material portions can be formed in the backside recesses to retard or prevent fluorine diffusion. To minimize adverse impact on the electrically conductive layers formed in the backside recesses, the blocking dielectric material portions can be laterally recessed from a trench employed to form the backside recesses.
摘要:
A first blocking dielectric layer is formed in a memory opening through a stack of an alternating plurality of material layers and insulator layers. A spacer with a bottom opening is formed over the first blocking dielectric layer by deposition of a conformal material layer and an anisotropic etch. A horizontal portion of the first blocking dielectric layer at a bottom of the memory opening can be etched by an isotropic etch process that minimizes overetch into the substrate. An optional additional blocking dielectric layer, at least one charge storage element, a tunneling dielectric, and a semiconductor channel can be sequentially formed in the memory opening to provide a three-dimensional memory stack.
摘要:
A method of making a monolithic three dimensional NAND string which contains a semiconductor channel and a plurality of control gate electrodes, includes selectively forming a plurality of discrete charge storage regions using atomic layer deposition. The plurality of discrete charge storage regions includes at least one of a metal or an electrically conductive metal oxide.
摘要:
A contact via structure can include a ruthenium portion formed by selective deposition of ruthenium on a semiconductor surface at the bottom of a contact trench. The ruthenium-containing portion can reduce contact resistance at the interface with an underlying doped semiconductor region. At least one conductive material portion can be formed in the remaining volume of the contact trench to form a contact via structure. Alternatively or additionally, a contact via structure can include a tensile stress-generating portion and a conductive material portion. In case the contact via structure is formed through an alternating stack of insulating layers and electrically conductive layers that include a compressive stress-generating material, the tensile stress-generating portion can at least partially cancel the compressive stress generated by the electrically conductive layers. The conductive material portion of the contact via structure can include a metallic material or a doped semiconductor material.