摘要:
A method of programming a nonvolatile memory device may include applying a program voltage to a memory cell. A supplementary pulse may be applied to the memory cell to facilitate thermalization of charges after the application of the program voltage. A recovery voltage may be applied to the memory cell after the application of the supplementary pulse. A program state of the memory cell may be verified using a verification voltage after the application of the recovery voltage.
摘要:
A method of programming a nonvolatile memory device may include applying a program voltage to a memory cell. A supplementary pulse may be applied to the memory cell to facilitate thermalization of charges after the application of the program voltage. A recovery voltage may be applied to the memory cell after the application of the supplementary pulse. A program state of the memory cell may be verified using a verification voltage after the application of the recovery voltage.
摘要:
Non-volatile memory devices and methods of programming a non-volatile memory device in which electrons are moved between charge trap layers through a pad oxide layer are provided. The non-volatile memory devices include a charge trap layer on a semiconductor substrate and storing electrons, a pad oxide layer on the first charge trap layer, and a second trap layer on the pad oxide layer and storing electrons. In a programming mode in which data is written, the stored electrons are moved between a first position of the first charge trap layer and a first position of the second charge trap layer through the pad oxide layer or between a second position of the first charge trap layer and a second position of the second charge trap layer through the pad oxide layer.
摘要:
Non-volatile memory devices and methods of programming a non-volatile memory device in which electrons are moved between charge trap layers through a pad oxide layer are provided. The non-volatile memory devices include a charge trap layer on a semiconductor substrate and storing electrons, a pad oxide layer on the first charge trap layer, and a second trap layer on the pad oxide layer and storing electrons. In a programming mode in which data is written, the stored electrons are moved between a first position of the first charge trap layer and a first position of the second charge trap layer through the pad oxide layer or between a second position of the first charge trap layer and a second position of the second charge trap layer through the pad oxide layer.
摘要:
Provided are a charge trap memory device and method of manufacturing the same. A charge trap memory device may include a tunnel insulating layer on a substrate, a charge trap layer on the tunnel insulating layer, and a blocking insulating layer formed of a material including Gd or a smaller lanthanide element on the charge trap layer.
摘要:
Crystalline aluminum oxide layers having increased energy band gap, charge trap memory devices including crystalline aluminum oxide layers and methods of manufacturing the same are provided. A method of forming an aluminum oxide layer having an increased energy band gap includes forming an amorphous aluminum oxide layer on a lower film, introducing hydrogen (H) or hydroxyl group (OH) into the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer including the H or OH.
摘要:
Provided are a gate stack, a capacitorless dynamic random access memory (DRAM) including the gate stack and methods of manufacturing and operating the same. The gate stack for a capacitorless DRAM may include a tunnel insulating layer on a substrate, a first charge trapping layer on the tunnel insulating layer, an interlayer insulating layer on the first charge trapping layer, a second charge trapping layer on the interlayer insulating layer, a blocking insulating layer on the second charge trapping layer, and a gate electrode on the blocking insulating layer. The capacitorless DRAM may include the gate stack on the substrate, and a source and a drain in the substrate on both sides of the gate stack.
摘要:
Provided is a method of forming an aluminum oxide layer and a method of manufacturing a charge trap memory device using the same. The method of forming an aluminum oxide layer may include forming an amorphous aluminum oxide layer on an underlying layer, forming a crystalline auxiliary layer on the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer. Forming the crystalline auxiliary layer may include forming an amorphous auxiliary layer on the amorphous aluminum oxide layer; and crystallizing the amorphous auxiliary layer.
摘要:
A charge trap memory device may include a tunnel insulating layer formed on a substrate. A charge trap layer may be formed on the tunnel insulating layer, wherein the charge trap layer is a higher-k dielectric insulating layer doped with one or more transition metals. The tunneling insulating layer may be relatively non-reactive with respect to metals in the charge trap layer. The tunneling insulating layer may also reduce or prevent metals in the charge trap layer from diffusing into the substrate.
摘要:
Crystalline aluminum oxide layers having increased energy band gap, charge trap memory devices including crystalline aluminum oxide layers and methods of manufacturing the same are provided. A method of forming an aluminum oxide layer having an increased energy band gap includes forming an amorphous aluminum oxide layer on a lower film, introducing hydrogen (H) or hydroxyl group (OH) into the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer including the H or OH.