摘要:
A charge trap memory device may include a tunnel insulating layer formed on a substrate. A charge trap layer may be formed on the tunnel insulating layer, wherein the charge trap layer is a higher-k dielectric insulating layer doped with one or more transition metals. The tunneling insulating layer may be relatively non-reactive with respect to metals in the charge trap layer. The tunneling insulating layer may also reduce or prevent metals in the charge trap layer from diffusing into the substrate.
摘要:
Provided is a method of forming an aluminum oxide layer and a method of manufacturing a charge trap memory device using the same. The method of forming an aluminum oxide layer may include forming an amorphous aluminum oxide layer on an underlying layer, forming a crystalline auxiliary layer on the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer. Forming the crystalline auxiliary layer may include forming an amorphous auxiliary layer on the amorphous aluminum oxide layer; and crystallizing the amorphous auxiliary layer.
摘要:
A method of programming a nonvolatile memory device may include applying a program voltage to a memory cell. A supplementary pulse may be applied to the memory cell to facilitate thermalization of charges after the application of the program voltage. A recovery voltage may be applied to the memory cell after the application of the supplementary pulse. A program state of the memory cell may be verified using a verification voltage after the application of the recovery voltage.
摘要:
Crystalline aluminum oxide layers having increased energy band gap, charge trap memory devices including crystalline aluminum oxide layers and methods of manufacturing the same are provided. A method of forming an aluminum oxide layer having an increased energy band gap includes forming an amorphous aluminum oxide layer on a lower film, introducing hydrogen (H) or hydroxyl group (OH) into the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer including the H or OH.
摘要:
A method of programming a nonvolatile memory device may include applying a program voltage to a memory cell. A supplementary pulse may be applied to the memory cell to facilitate thermalization of charges after the application of the program voltage. A recovery voltage may be applied to the memory cell after the application of the supplementary pulse. A program state of the memory cell may be verified using a verification voltage after the application of the recovery voltage.
摘要:
Provided are a gate stack, a capacitorless dynamic random access memory (DRAM) including the gate stack and methods of manufacturing and operating the same. The gate stack for a capacitorless DRAM may include a tunnel insulating layer on a substrate, a first charge trapping layer on the tunnel insulating layer, an interlayer insulating layer on the first charge trapping layer, a second charge trapping layer on the interlayer insulating layer, a blocking insulating layer on the second charge trapping layer, and a gate electrode on the blocking insulating layer. The capacitorless DRAM may include the gate stack on the substrate, and a source and a drain in the substrate on both sides of the gate stack.
摘要:
Crystalline aluminum oxide layers having increased energy band gap, charge trap memory devices including crystalline aluminum oxide layers and methods of manufacturing the same are provided. A method of forming an aluminum oxide layer having an increased energy band gap includes forming an amorphous aluminum oxide layer on a lower film, introducing hydrogen (H) or hydroxyl group (OH) into the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer including the H or OH.
摘要:
Provided are a non-volatile memory device and a method of manufacturing the non-volatile memory device. The non-volatile memory device includes a charge trap layer having a crystalline material. In the method, a tunneling insulating layer is formed on a substrate, and a crystalline charge trap layer is formed on the tunneling insulating layer.
摘要:
Provided is a method of forming an aluminum oxide layer and a method of manufacturing a charge trap memory device using the same. The method of forming an aluminum oxide layer may include forming an amorphous aluminum oxide layer on an underlying layer, forming a crystalline auxiliary layer on the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer. Forming the crystalline auxiliary layer may include forming an amorphous auxiliary layer on the amorphous aluminum oxide layer; and crystallizing the amorphous auxiliary layer.
摘要:
Example embodiments relate to nonvolatile semiconductor memory devices using an electric charge storing layer as a storage node and fabrication methods thereof. An electric charge trap type nonvolatile memory device may include a tunneling film, an electric charge storing layer, a blocking insulation film, and a gate electrode. The blocking insulation film may be an aluminum oxide having an energy band gap larger than that of a γ-phase aluminum oxide film. An α-phase crystalline aluminum oxide film as a blocking insulation film may have an energy band gap of about 7.0 eV or more along with fewer defects. The crystalline aluminum oxide film may be formed by providing a source film (e.g., AlF3 film) on or within a preliminary blocking insulation film (e.g., amorphous aluminum oxide film) and performing a heat treatment. Alternatively, an aluminum compound (e.g., AlF3) may be introduced into the preliminary blocking insulation film by other diffusion methods or ion implantation. Accordingly, the ability of the memory device to maintain electric charges may be improved, the operating voltage for programming and erasing may be lowered, and the operating speed may be increased.