摘要:
In a hybrid integrated circuit device of the present invention, leads are fixedly attached on the upper surface of a circuit board. The lead includes an island portion, a slope portion, and a lead portion. A transistor and a diode are mounted on the upper surface of the island portion. Electrodes provided on the upper surfaces of the transistor and the diode are connected to a bonding portion through a fine metal wire. The bonding portion of the lead is disposed at a higher position than the island portion. Thus, the fine metal wires connected to the bonding portion are separated from each other.
摘要:
In a hybrid integrated circuit device, a circuit board on which an island portion of a lead is fixedly attached and a control board on which a control element and the like are mounted are disposed in an overlapping manner. The circuit board and the control board are integrally encapsulated with an encapsulating resin. A transistor disposed on an upper surface of the circuit board and a control element mounted on an upper surface of the control board are also covered by the encapsulating resin. Thus, a module in which an inverter circuit and a control circuit are integrally encapsulated with resin is provided.
摘要:
In a hybrid integrated circuit device of the present invention, leads are fixedly attached on the upper surface of a circuit board. The lead includes an island portion, a slope portion, and a lead portion. A transistor and a diode are mounted on the upper surface of the island portion. Electrodes provided on the upper surfaces of the transistor and the diode are connected to a bonding portion through a fine metal wire. The bonding portion of the lead is disposed at a higher position than the island portion. Thus, the fine metal wires connected to the bonding portion are separated from each other.
摘要:
In a hybrid integrated circuit device, a circuit board on which an island portion of a lead is fixedly attached and a control board on which a control element and the like are mounted are disposed in an overlapping manner. The circuit board and the control board are integrally encapsulated with an encapsulating resin. A transistor disposed on an upper surface of the circuit board and a control element mounted on an upper surface of the control board are also covered by the encapsulating resin. Thus, a module in which an inverter circuit and a control circuit are integrally encapsulated with resin is provided.
摘要:
A light-emitting diode driver circuit includes: a first-rectifier circuit to output a first-rectified voltage; a transformer including primary and secondary coils and an auxiliary coil inductively coupled to the primary or secondary coils, the primary coil being applied with the first-rectified voltage; a transistor connected in series to the primary coil; a second-rectifier circuit to output a second-rectified voltage obtained by rectifying a voltage generated in the auxiliary coil; a capacitor to be charged with the second-rectified voltage; and a control circuit to control on and off of the transistor based on a charging voltage of the capacitor so that the charging voltage becomes equal to a predetermined voltage, the secondary coil outputting a voltage that varies with a frequency corresponding to a frequency of the first-rectified voltage and that corresponds to a turns ratio between the primary and secondary coils, as a voltage for driving a light-emitting diode.
摘要:
A light-emitting diode driver circuit includes: a first-rectifier circuit to output a first-rectified voltage; a transformer including primary and secondary coils and an auxiliary coil inductively coupled to the primary or secondary coils, the primary coil being applied with the first-rectified voltage; a transistor connected in series to the primary coil; a second-rectifier circuit to output a second-rectified voltage obtained by rectifying a voltage generated in the auxiliary coil; a capacitor to be charged with the second-rectified voltage; and a control circuit to control on and off of the transistor based on a charging voltage of the capacitor so that the charging voltage becomes equal to a predetermined voltage, the secondary coil outputting a voltage that varies with a frequency corresponding to a frequency of the first-rectified voltage and that corresponds to a turns ratio between the primary and secondary coils, as a voltage for driving a light-emitting diode.