摘要:
A semiconductor wafer, which can be divided into chips at a high yield and a low cost and easily handled during transfer thereof as well, is disclosed. In a semiconductor wafer of such structure that structures with a low mechanical strength, such as suspended microstructures, are exposed at a surface thereof, detachable adhesive sheet making up protective caps for the respective suspended microstructures are formed over the semiconductor wafer. By means of this, even if the semiconductor wafer is diced into the individual chips, respective microstructures on chips are protected from the external force, such as the pressure of cutting water, during the dicing process.
摘要:
On a silicon wafer there is formed a movable gate MOS transistor (sensing element: functional element). A bonding frame consisting of a silicon thin film is patterned around an element formation region on the surface of the silicon wafer. On a cap forming silicon wafer there is projectively provided a leg portion on the bottom surface of which a bonding layer consisting of a gold film is formed. The cap forming silicon wafer is disposed on the silicon wafer, whereupon heating with respect thereto is performed at a temperature equal to higher than a gold/silicon eutectic temperature to thereby make bondage between the bonding frame of the silicon wafer and the bonding layer of the cap forming silicon wafer. Thereafter, the both wafers are diced in chip units.
摘要:
A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
摘要:
A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
摘要:
A sensing element is formed on a silicon (Si) substrate and covered with a cap. The cap has a leg portion having a titanium layer and a gold layer formed in that order on the lower surface thereof. The silicon substrate has an Si bonding frame at a position corresponding to the leg portion. When bonding the Si bonding frame of the silicon substrate and the leg portion of the cap, the titanium layer deoxidizes a naturally oxidized silicon layer formed on the Si bonding frame, whereby the silicon substrate and the cap can be uniformly bonded together with an Au/Si eutectic portion interposed therebetween. In this case, the Au/Si eutectic portion includes a titanium oxide accompanying the deoxidization of the naturally oxidized silicon layer.
摘要:
A heat resisting resin sheet is bonded to a semiconductor chip as a protective cap for protecting a beam structure provided on the semiconductor chip, through a heat resisting adhesive. The heat resisting resin sheet is composed of a polyimide base member and the heat resisting adhesive is composed of silicone adhesive. The heat resisting resin sheet is not deformed during a manufacturing process of the semiconductor chip. In addition, grinding water does not invade into the semiconductor chip during dicing-cut.
摘要:
An aluminum alloy extruded material in relation with the present invention is with high strength by die quench air cooling and excellent in SCC resistance. The aluminum alloy extruded material is an Al—Zn—Mg-based aluminum alloy extruded material for structural member for automobiles such as a bumper reinforce, a door guard bar and the like which satisfies three expressions of 5.0≤[Zn]≤7.0, [Zn]/5.38
摘要:
A casted ingot of a heat treatment type Al—Zn—Mg series aluminum alloy comprising Zn: 4.0-8.0% by mass, Mg: 0.5-2.0% by mass, Cu: 0.05-0.5% by mass, Ti: 0.01-0.1% by mass, and any one or more of Mn: 0.1-0.7% by mass, Cr: 0.1-0.5% by mass and Zr: 0.05-0.3% by mass, and the balance being aluminum and incidental impurities is extruded at a homogenization treatment temperature after a homogenization treatment without cooled, and a resulted extruded material is die quenched at a cooling rate equal to or more than 100° C./min and then subjected to an artificial aging treatment, wherein the homogenization treatment is carried out by heating to the homogenization treatment temperature as 430-500° C. at a heating rate less than 750° C./hr or by heating to the homogenization treatment temperature and held the homogenization treatment temperature for 3 hours.
摘要:
An aluminum alloy extruded material in relation with the present invention is with high strength by die quench air cooling and excellent in SCC resistance. The aluminum alloy extruded material is an Al—Zn—Mg-based aluminum alloy extruded material for structural member for automobiles such as a bumper reinforce, a door guard bar and the like which satisfies three expressions of 5.0≦[Zn]7.0, [Zn]/5.38
摘要:
A bridge circuit includes four gage resistors. Each gage resistor is divided into two division gage resistors. A couple of division gage resistors. The junction points between division gage resistors outputting the same potential when no pressure is applied are used for diagnostic. Four gage resistors out of the eight gage resistors are arranged near the center of diaphragm 14, and the other four division resistors are arranged near the peripheral edge portion of the diaphragm 14 to make the stress distribution even.