摘要:
An object is to realize high performance and low power consumption in a semiconductor device having an SOI structure. In addition, another object is to provide a semiconductor device having a high performance semiconductor element which is more highly integrated. A semiconductor device is such that a plurality of n-channel field-effect transistors and p-channel field-effect transistors are stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. By controlling a distortion caused to a semiconductor layer due to an insulating film having a stress, a plane orientation of the semiconductor layer, and a crystal axis in a channel length direction, difference in mobility between the n-channel field-effect transistor and the p-channel field-effect transistor can be reduced, whereby current driving capabilities and response speeds of the n-channel field-effect transistor and the p-channel field-effect can be comparable.
摘要:
An object is to realize high performance and low power consumption in a semiconductor device having an SOI structure. In addition, another object is to provide a semiconductor device having a high performance semiconductor element which is more highly integrated. A semiconductor device is such that a plurality of n-channel field-effect transistors and p-channel field-effect transistors are stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. By controlling a distortion caused to a semiconductor layer due to an insulating film having a stress, a plane orientation of the semiconductor layer, and a crystal axis in a channel length direction, difference in mobility between the n-channel field-effect transistor and the p-channel field-effect transistor can be reduced, whereby current driving capabilities and response speeds of the n-channel field-effect transistor and the p-channel field-effect can be comparable.
摘要:
A semiconductor device is demonstrated in which a plurality of field-effect transistors is stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. Each of the plurality of filed-effect transistors has a semiconductor layer which is prepared by a process including separation of the semiconductor layer from a semiconductor substrate followed by bonding thereof over the substrate. Each of the plurality of field-effect transistors is covered with an insulating film which provides distortion of the semiconductor layer. Furthermore, the crystal axis of the semiconductor layer, which is parallel to the crystal plane thereof, is set to a channel length direction of the semiconductor layer, which enables production of the semiconductor device with high performance and low power consumption having an SOI structure.
摘要:
A semiconductor device having a novel structure by which the operating characteristics and reliability are improved and a manufacturing method thereof. An island-shaped semiconductor layer provided over a substrate, including a channel formation region provided between a pair of impurity regions; a first insulating layer provided so as to be in contact with the side surface of the semiconductor layer; a gate electrode provided over the channel formation region so as to get across the semiconductor layer; and a second insulating layer provided between the channel formation region and the gate electrode are included. The semiconductor layer is locally thinned, the channel formation region is provided in the thinned region, and the second insulating layer covers the first insulating layer provided on the side surface of the semiconductor layer at least in the region which overlaps with the gate electrode.
摘要:
It is an object of the present invention to manufacture a thin film transistor having a required property without complicating steps and devices. It is another object of the present invention to provide a technique for manufacturing a semiconductor device having high reliability and better electrical characteristics with a higher yield at lower cost. In the present invention, a lightly doped impurity region is formed in a source region side or a drain region side of a semiconductor layer covered with a gate electrode layer in a thin film transistor. The semiconductor layer is doped diagonally to the surface thereof using the gate electrode layer as a mask to form the lightly doped impurity region. Therefore, the properties of the thin film transistor can be minutely controlled.
摘要:
In the invention, a low concentration impurity region is formed between a channel formation region and a source region or a drain region in a semiconductor layer and covered with a gate electrode layer in a thin film transistor The semiconductor layer is doped obliquely to the surface thereof using the gate electrode layer as a mask to form the low concentration impurity region. The semiconductor layer is formed to have an impurity region including an impurity element for imparting one conductivity which is different from conductivity of the thin film transistor, thereby being able to minutely control the properties of the thin film transistor.
摘要:
The present invention provides a semiconductor device capable of being mass-produced and a manufacturing method of the semiconductor device. The present invention also provides a semiconductor device using an extreme thin integrated circuit and a manufacturing method of the semiconductor device. Further, the present invention provides a low power consumption semiconductor device and a manufacturing method of the semiconductor device. According to one aspect of the present invention, a semiconductor device that has a semiconductor nonvolatile memory element transistor over an insulating surface in which a floating gate electrode of the memory transistor is formed by a plurality of conductive particles or semiconductor particles is provided.
摘要:
In the invention, a low concentration impurity region is formed between a channel formation region and a source region or a drain region in a semiconductor layer and covered with a gate electrode layer in a thin film transistor The semiconductor layer is doped obliquely to the surface thereof using the gate electrode layer as a mask to form the low concentration impurity region. The semiconductor layer is formed to have an impurity region including an impurity element for imparting one conductivity which is different from conductivity of the thin film transistor, thereby being able to minutely control the properties of the thin film transistor.
摘要:
The present invention provides a semiconductor device capable of being mass-produced and a manufacturing method of the semiconductor device. The present invention also provides a semiconductor device using an extreme thin integrated circuit and a manufacturing method of the semiconductor device. Further, the present invention provides a low power consumption semiconductor device and a manufacturing method of the semiconductor device. According to one aspect of the present invention, a semiconductor device that has a semiconductor nonvolatile memory element transistor over an insulating surface in which a floating gate electrode of the memory transistor is formed by a plurality of conductive particles or semiconductor particles is provided.
摘要:
It is an object of the present invention to manufacture a thin film transistor having a required property without complicating steps and devices. It is another object of the present invention to provide a technique for manufacturing a semiconductor device having high reliability and better electrical characteristics with a higher yield at lower cost. In the present invention, a lightly doped impurity region is formed in a source region side or a drain region side of a semiconductor layer covered with a gate electrode layer in a thin film transistor. The semiconductor layer is doped diagonally to the surface thereof using the gate electrode layer as a mask to form the lightly doped impurity region. Therefore, the properties of the thin film transistor can be minutely controlled.