摘要:
A semiconductor device including a well divided into a plurality of parts by a trench, to effect a reduction in layout area, and a manufacturing method thereof. In the semiconductor device, an element isolation film is formed such as to have to a depth from the main surface of a semiconductor substrate, and the area from the main surface of the substrate to the depth is divided into a plurality of first regions. A first well is formed in each of the first regions. A second well is formed in a second region deeper than the first well in the substrate, and the second well is in contact with some of the first wells.
摘要:
A silicided region (11a) is formed in part of a surface of a gate electrode (3a) which is far from a storage node when a diffusion region (7a) is connected to a bit line and a diffusion region (8a) is connected to the storage node. A silicided region (12a) is formed in a surface of the diffusion region (7a) connected to the bit line. A MOSFET which suppresses a leakage current from the storage node to the gate electrode and decreases the resistance of the diffusion region connected to the bit line and the resistance of said gate electrode is provided.
摘要:
A high withstand voltage semiconductor device includes a semiconductor substrate of a first conductivity type, a metallic wiring formed on a surface of the semiconductor substrate and having a contact face with said semiconductor substrate, a highly doped impurity region formed within the semiconductor substrate below the contact face and of a second conductivity type, a lightly doped impurity region formed around the highly doped impurity region and of the second conductivity type, and a MOSFET with a second conductivity-type having a source or drain region formed on the surface of the semiconductor substrate and electrically connected to the metallic wiring through the impurity regions.
摘要:
A silicided region (11a) is formed in part of a surface of a gate electrode (3a) which is far from a storage node when a diffusion region (7a) is connected to a bit line and a diffusion region (8a) is connected to the storage node. A silicided region (12a) is formed in a surface of the diffusion region (7a) connected to the bit line. A MOSFET which suppresses a leakage current from the storage node to the gate electrode and decreases the resistance of the diffusion region connected to the bit line and the resistance of said gate electrode is provided.
摘要:
MISFETs after the 32 nm technology node have a High-k gate insulating film and a metal gate electrode. Such MISFETs have the problem that the absolute value of the threshold voltage of n-MISFET and p-MISFET inevitably increases by the subsequent high temperature heat treatment. The threshold voltage is therefore controlled by forming various threshold voltage adjusting metal films on a High-k gate insulating film and introducing a film component from them into the High-k gate insulating film. The present inventors have however revealed that lanthanum or the like introduced into the High-k gate insulating film of the n-MISFET is likely to transfer to the STI region by the subsequent heat treatment.The semiconductor integrated circuit device according to the present invention is provided with an N channel threshold voltage adjusting element outward diffusion preventing region in the surface portion of the element isolation region below and at the periphery of the gate stack of the n-MISFET.
摘要:
The technology which can control a threshold value appropriately, adopting the material which fitted each gate electrode of the MOS structure from which a threshold value differs without making the manufacturing process complicated, and does not make remarkable diffusion to the channel region from the gate electrode is offered.The PMOS transistor has a gate electrode GP, and an N type well which confronts each other via a gate insulating film with this, and the NMOS transistor has a gate electrode GN, and an P type well which confronts each other via a gate insulating film with this. While gate electrode GN includes a polycrystalline silicon layer, gate electrode GP is provided with the laminated structure of a metal layer/polycrystalline silicon layer.
摘要:
The semiconductor device which can apply the stress application technology to a channel part by a liner film to MISFET including a full silicidation gate electrode, and its manufacturing method are realized. The first liner silicon nitride film is formed on the semiconductor substrate MISFET formed. Insulating films, such as a silicon oxide film, are formed on the first liner silicon nitride film so that it may fully fill up the side of a gate electrode. Next, flattening processing is performed to an insulating film and the first liner silicon nitride film, and a polysilicon gate electrode is exposed. An insulating film is removed leaving the first liner silicon nitride film. The full silicidation of the exposed gate electrode is done, and the second liner silicon nitride film that covers the first liner silicon nitride film and the exposed full silicidation gate electrode is formed.
摘要:
The technology which can control a threshold value appropriately, adopting the material which fitted each gate electrode of the MOS structure from which a threshold value differs without making the manufacturing process complicated, and does not make remarkable diffusion to the channel region from the gate electrode is offered. The PMOS transistor has a gate electrode GP, and an N type well which confronts each other via a gate insulating film with this, and the NMOS transistor has a gate electrode GN, and an P type well which confronts each other via a gate insulating film with this. While gate electrode GN includes a polycrystalline silicon layer, gate electrode GP is provided with the laminated structure of a metal layer/polycrystalline silicon layer.
摘要:
MOS type semiconductor device is formed on the primary surface of a semiconductor substrate. A channel region includes a punch-through stopper layer, a lower counter-doped layer, and an upper counter-doped layer. The punch-through stopper layer is formed between the source region and the drain region and has a first concentration peak. The lower counter-doped layer is formed between the source region and the drain region, and has a second concentration peak at a position shallower than the position of the first concentration peak. Further, the upper counter-doped layer is formed between the source region and the drain region, and has a third concentration peak at a position shallower than the position of the second concentration peak. A buried-channel semiconductor device exhibits high punch-through characteristics and prevents an increase in a threshold voltage.
摘要:
A dummy cell part includes a capacitor having a first end which is connected to one of a plurality of pads and a P-N junction element having a first end which is connected to one of the plurality of pads and a second end which is connected to one of the plurality of pads . A sense part is connected to a second end of the capacitor , for sensing a potential on the second end of the capacitor and outputting the result of sensing to one of the plurality of pads . Thus, a memory cell evaluation semiconductor device which can evaluate a single memory cell, a method of fabricating the same and a memory cell evaluation method are obtained.