摘要:
An integrated circuit structure is disclosed that has a layer of logical and functional devices and an interconnection layer above the layer of logical and functional devices. The interconnection layer has a substrate, conductive features within the substrate and caps positioned only above the conductive features.
摘要:
A method to form a closed air gap interconnect structure is described. A starting structure made of regions of a permanent support dielectric under the interconnect lines and surrounding interconnect vias with one or more sacrificial dielectrics present in the remaining portions of the interconnect structure, is capped with a dielectric barrier which is perforated using a stencil with a regular array of holes. The sacrificial dielectrics are then extracted through the holes in the dielectric barrier layer such that the interconnect lines are substantially surrounded by air except for the regions of the support dielectric under the lines. The holes in the cap layer are closed off by depositing a second barrier dielectric so that a closed air gap is formed. Several embodiments of this method and the resulting structures are described.
摘要:
A method to form a closed air gap interconnect structure is described. A starting structure made of regions of a permanent support dielectric under the interconnect lines and surrounding interconnect vias with one or more sacrificial dielectrics present in the remaining portions of the interconnect structure, is capped with a dielectric barrier which is perforated using a stencil with a regular array of holes. The sacrificial dielectrics are then extracted through the holes in the dielectric barrier layer such that the interconnect lines are substantially surrounded by air except for the regions of the support dielectric under the lines. The holes in the cap layer are closed off by depositing a second barrier dielectric so that a closed air gap is formed. Several embodiments of this method and the resulting structures are described.
摘要:
A method to form a closed air gap interconnect structure is described. A starting structure made of regions of a permanent support dielectric under the interconnect lines and surrounding interconnect vias with one or more sacrificial dielectrics present in the remaining portions of the interconnect structure, is capped with a dielectric barrier which is perforated using a stencil with a regular array of holes. The sacrificial dielectrics are then extracted through the holes in the dielectric barrier layer such that the interconnect lines are substantially surrounded by air except for the regions of the support dielectric under the lines. The holes in the cap layer are closed off by depositing a second barrier dielectric so that a closed air gap is formed. Several embodiments of this method and the resulting structures are described.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.
摘要:
A method for forming high capacitance crystalline dielectric layers with (111) texture is disclosed. In an exemplary embodiment, deposition of a plurality of nuclei is performed at a temperature in the range of about 430 to 460 degrees Celsius, followed by growth of a continuous BSTO dielectric layer at a temperature greater than 600 degrees Celsius. In an exemplary embodiment, a process is disclosed for growing a barium strontium titanium oxide film with high capacitance and thickness of about 30 nm or less.
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
摘要:
The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.
摘要:
Hybrid orientation substrates allow the fabrication of complementary metal oxide semiconductor (CMOS) circuits in which the n-type field effect transistors (nFETs) are disposed in a semiconductor orientation which is optimal for electron mobility and the p-type field effect transistors (pFETs) are disposed in a semiconductor orientation which is optimal for hole mobility. This invention discloses that the performance advantages of FETs formed entirely in the optimal semiconductor orientation may be achieved by only requiring that the device's channel be disposed in a semiconductor with the optimal orientation. A variety of new FET structures are described, all with the characteristic that at least some part of the FET's channel has a different orientation than at least some part of the FET's source and/or drain. Hybrid substrates into which these new FETs might be incorporated are described along with their methods of making.
摘要:
The present invention provides a method for forming low-defect density changed-orientation Si by amorphization/templated recrystallization (ATR) processes in which regions of Si having a first crystal orientation are amorphized by ion implantation and then recrystallized into the orientation of a template layer having a different orientation. More generally, the invention relates to the high temperature annealing conditions needed to eliminate the defects remaining in Si-containing single crystal semiconductor materials formed by ion-implant-induced amorphization and templated recrystallization from a layer whose orientation may be the same or different from the amorphous layer's original orientation. The key component of the inventive method is a thermal treatment for minutes to hours in the the temperature range 1250-1330° C. to remove the defects remaining after the initial recrystallization anneal. The invention also provides a low-defect density changed-orientation Si formed by ATR for use in hybrid orientation substrates.