Abstract:
A method for fabricating a coreless packaging substrate is provided, which includes: forming a dielectric layer on a conductive plate having a plurality of conductive pads; forming a circuit layer on the dielectric layer and forming in the dielectric layer a plurality of conductive vias that electrically connect the circuit layer and the conductive pads; and removing a portion of the conductive plate so as to cause the remaining portion of the conductive plate to form a plurality of conductive elements, thereby dispensing with a core layer and reducing the material and fabrication cost.
Abstract:
A package structure is provided, which includes: a substrate having opposite top and bottom surfaces and a plurality of conductive pads and a plurality of conductive posts formed therein, wherein the conductive pads are exposed from the bottom surface of the substrate, and the conductive posts are electrically connected to the conductive pads and each of the conductive posts has an end surface exposed from the top surface of the substrate; a plurality of first conductive bumps formed on the end surfaces of the conductive posts; a plurality of second conductive bumps formed on the top surface of the substrate, wherein the second conductive bumps are higher than the first conductive bumps; and at least a first electronic element disposed on and electrically connected to the first conductive bumps, thereby increasing the wiring flexibility and facilitating subsequent disposing of electronic elements without changing existing machines.
Abstract:
A package structure is provided, which includes: a substrate having opposite top and bottom surfaces and a plurality of conductive pads and a plurality of conductive posts formed therein, wherein the conductive pads are exposed from the bottom surface of the substrate, and the conductive posts are electrically connected to the conductive pads and each of the conductive posts has an end surface exposed from the top surface of the substrate; a plurality of first conductive bumps formed on the end surfaces of the conductive posts; a plurality of second conductive bumps formed on the top surface of the substrate, wherein the second conductive bumps are higher than the first conductive bumps; and at least a first electronic element disposed on and electrically connected to the first conductive bumps, thereby increasing the wiring flexibility and facilitating subsequent disposing of electronic elements without changing existing machines.
Abstract:
A package substrate and a method of fabricating the same are provided. The method includes providing a substrate body having a first surface, a second surface opposing the first surface, a plurality of first electrical connecting pads disposed on the first surface; mounting a metal board on the first electrical connecting pads; and patterning the metal board so as to define a plurality of metal pillars corresponding to the first electrical connecting pads. Therefore, drawbacks of raw edges and unequal heights of the metal pillars can be obviated.
Abstract:
A package structure is disclosed, which includes: a first substrate; a build-up layer formed on and electrically connected to the first substrate and having a cavity; at least an electronic element disposed in the cavity and electrically connected to the first substrate; a stack member disposed on the build-up layer so as to be stacked on the first substrate; and an encapsulant formed between the build-up layer and the stack member. The build-up layer facilitates to achieve a stand-off effect and prevent solder bridging.