摘要:
A single plane programmable logic array (PLA) using dynamic CMOS logic has switching transistors located at specific locations within a row-column matrix. The transistors within a column are series connected and have their gates common connected in rows. PMOS and NMOS control transistors conduct exclusively to connect output and input ends of the columns respectively to logic 1 or logic 0 in successive phases of a common clock. Control inputs are applied to specific rows. By applying data inputs to column input ends and interconnecting all the column output ends, the PLA is configured to function as a multiplexer. By setting the input end of columns to logic 0 and selectively interconnecting output ends of the columns, the PLA is configured to perform other combinational logic functions.
摘要:
A frequency divider (50) comprises complementary components (e.g., CMOS transistors) which are placed in two complementary portions (10, 20) with similar structures. The portions are coupled by four lines (131-134). Each line (e.g., 131) is coupled to a pair of transistors including a pull device (e.g., 271) and a hold device (e.g., 291). The devices receives identical signals from another line (e.g., 134) and the input signal X in the same, non-inverted form. The devices have complementary logical functions because of their complementary structures (serial.backslash.parallel) and complementary components (P-FET, N-FET). When a line (e.g., 131) is pulled to a reference line (e.g., 91), contention between the devices is substantially avoided. There is no need to provide the input signal X in a non-inverted and in an inverted form.
摘要:
The rise time of a voltage Vo presented to a load, based on an input voltage Vi provided via an RC filter coupled to the load for removing higher frequency noise on Vo, is substantially reduced by providing a sensor circuit with differential inputs Vi, Vo. The sensor circuit drives a charger circuit coupled to a DC potential and the load so that rapid charging of C to Vo does not depend on R. As Vo approaches Vi, the sensor circuit deactivates the charger circuit to stop further charging and a latch coupled to the sensor circuit shuts off the sensor circuit to reduce power consumption while (Vo.about.Vi)>0. A current mirror buffer is desirably included between the sensor output and the latch for level shifting.
摘要:
The amplifier (200) includes an input stage (220) coupled to two output transistors (281, 282) having a common terminal at the output terminal (206) of the amplifier. Class AB operation of the output transistors (281, 282) is possible at a comparatively low supply voltage. In order to obtain such operation, measurement transistors (271, 272) are coupled to the same control input (283, 284) as the output transistors (281, 282). These measurement transistors (271, 272) are serially coupled to a current mirror (260). The quiescent current of the output transistors (281, 282) is measured and used to produce a feedback signal which is superimposed to the control signals.
摘要:
An integrated data processing system includes a shared internal bus for transferring both instructions and data. A shared bus interface unit is connected to the shared internal bus and connectable via a shared external bus to a shared external memory array such that instructions and data held in the shared external memory array are transferrable to the shared internal bus via the shared bus interface unit. A general purpose (GP) central processing unit (CPU) is connected to the shared internal bus for retrieving GP instructions. The GP CPU includes an execution unit for executing GP instructions to process data retrieved by the GP CPU from the shared internal bus. A digital signal processor (DSP) module connected to the shared internal bus, the DSP module includes a signal processor for processing an externally-provided digital signal received by the DSP module by executing DSP command-list instructions. Execution of DSP command-list code instructions by the DSP module is independent of and in parallel with execution of GP instructions by the GP CPU. A shared internal memory that holds command-list code instructions and is connected for access by the DSP module for retrieval of command-list code instructions for execution by the DSP module and for access by the GP CPU for storage and retrieval of instructions and data.
摘要:
A differential switched capacitor circuit (6) for sampling a differential input signal (IP, IM) in different sampling phases (PHI0, PHI1) and for correcting errors at an output thereof, comprises:m switched capacitor stages (8-16) coupled in a chain, a first stage (8) being coupled to the output of the circuit, each of the m switched capacitor stages (8-16) being coupled to an adjacent stage in the chain depending on the sampling phase such that a charge representative of the error is equally shared between adjacent stages in the chain and wherein the mth stage (16) is selectively coupled to an end node so as to cancel the charge thereon, whereby after a number of sampling phases the error at the output is substantially reduced by a factor of up to 1/m.
摘要:
A phase lock loop having an bandwidth that does not depend upon N. The phase lock loop comprising: a controlled oscillator, a frequency divider by N, a phase detector for producing an error signal ER, and an adjustable converter, coupled to the phase detector and to the current controlled oscillator, for receiving ER and providing the controlled oscillator a control signal such that that the (Fico/N) ranges between a minimum value of Fmin and a maximal value of Fmax, wherein Fref=(Fmin+Fmax)/2.
摘要:
A two stage operational amplifier circuit comprises a first stage (31) having an input (2, 4) and an output, and a second stage (33) having an input and an output (19). The second stage input is coupled to receive the first stage output. A feedback path (41, 45, 47, 51) is coupled between the output and the input of the second stage. The feedback path (41, 45, 47, 51) comprises a low-frequency compensation path (41, 45) and high-frequency compensation path (45, 47, 51). The feedback path (41, 45, 47, 51) is compensated such that the frequency response of the second output of the second stage is substantially 6 dB per octave throughout the high-frequency region.
摘要:
An analog-to-digital converter is introduced which operates as an oversampled delta-sigma converter. The converter is implemented fully differentially, having doubled integrator capacitors (130, 230), comparators (180, 280), and feedback units (160, 260). In order to reduce the influence of parasitic capacities, the feedback units (160, 260) comprise cascoded switches (171-179). Internal auxiliary signals for controlling the feedback units (160, 260) return to zero at clock frequency. The converter can be used in an integrated signal processing circuit having analog and digital domains on one chip. The capacitors (130, 230) itself are implemented by MOS transistors with the same single poly process as the rest of the circuit. In a second embodiment of the invention, the analog-to-digital converter (500) comprises multiple comparators (580, 572, 573, 574), dynamic matching circuits (801, 802). The comparators (572, 573, 574) can received dithered input signals.
摘要:
A transition control circuit (2) for controlling the transitions of an output signal, at an output node (8) of a driver circuit, in dependence on the logic state of an input signal at an input node (10). The output signal being switchable between a first logic state and a second logic state. The transition control circuit (2) comprises first means (16) and second means (14). The first means (16) is enabled when the output signal has the first logic state and the input signal has the second logic state, and is disabled when the output signal has the second logic state or the input signal has the first logic state. Once enabled, the first means (16) couples the output node (8) to a first supply line (GNDA) whereby the output signal switches to the second logic state. The second means (14) is enabled when the output signal has the second logic state and the input signal has the second logic state, and is disabled when the output signal has the first logic state or the input signal has the first logic state. Once enabled, the second means (14) couples the output node to a second supply line (GNDB) whereby the output signal is held in the second logic state until the next transition of the input signal.