Abstract:
A testing system includes: a signal generator arranged to generate a testing signal; a dividing circuit coupled to the signal generator for providing a plurality of input signals according to the testing signal; and a plurality of power-amplifier chips coupled to the dividing circuit for being tested by generating a plurality of output signals for a predetermined testing time according to the plurality of input signals respectively.
Abstract:
An integrated circuit die stack includes a first die having a first phase locked loop (PLL) and a second die having a second PLL. The first PLL includes a first voltage controlled oscillator (VCO) and the second PLL includes a second VCO. The first VCCO and the second VCCO share a frequency divider and a loop filter.
Abstract:
An IC includes a plurality of pads at a top surface of a semiconductor wafer, an amplifier configured to receive a first AC signal at an input terminal, and output a second AC signal at an output terminal, a first detection circuit coupled to the input terminal and configured to output a first DC voltage to a first pad of the plurality of pads responsive to the first AC signal, and a second detection circuit coupled to the output terminal and configured to output a second DC voltage to a second pad of the plurality of pads responsive to the second AC signal.
Abstract:
A test circuit includes an oscillator configured to generate an oscillation signal, a device-under-test (DUT) configured to output an AC signal based on the oscillation signal, a first detection circuit configured to generate a first DC voltage having a first value based on the oscillation signal, and a second detection circuit configured to generate a second DC voltage having a second value based on the AC signal.
Abstract:
A phase frequency detector circuit includes an edge detector circuit, a plurality of phase frequency detector sub-circuits, and a decision circuit. The edge detector circuit is configured to receive a first input signal and a second input signal. The decision circuit is configured to detect whether a blind condition exits based on outputs of the edge detector circuit and outputs of the plurality of phase frequency detector sub-circuits. Responsive to a result of the decision circuit, a corresponding frequency detector sub-circuit of the plurality of phase frequency detector sub-circuit is configured to provide signals for use in determining a phase difference between the first input signal and the second input signal.
Abstract:
A phase locked loop (PLL) includes a voltage controlled oscillator (VCO), a loop filter, and a feedback control unit. The VCO is configured to generate a first oscillating signal and a second oscillating signal according to a VCO control signal. The loop filter is configured to output the VCO control signal by low-pass filtering a signal at an input node of the loop filter. The feedback control unit has an output node coupled to the input node of the loop filter, the feedback control unit is configured to apply a first predetermined amount of current, along a first current direction, to the first feedback control output node during a variable period of time; and to apply one of K second predetermined amounts of current, along a second current direction opposite the first current direction, to the first feedback control output node during a predetermined period of time.
Abstract:
A shared loop filter includes an input port configured to selectively receive a first input from a first charge pump. The first charge pump is connected to a first phase locked loop (PLL) in a first die. The input port is further configured to selectively receive a second input from a second charge pump, the second charge pump connected to a second PLL in a second die separate from the first die. The shared loop filter further includes an output port configured to selectively provide an output to a first voltage controlled oscillator (VCO). The first VCO is connected to the first PLL. The output port is further configured to selectively output a second output to a second VCO. The second VCO is connected to the second PLL.
Abstract:
A method of generating an output signal includes determining a sampling period N according to a number of most significant bits (MSBs) of a divider number control signal. The method also includes determining a first logic value of a control signal by a comparing circuit based on the sampling period N, and generating a coarse tuning signal by a code generating circuit based on a phase difference signal and the control signal. When an M-th least significant bit (LSB) of the number of MSBs of the divider number control signal equals a second logic value, the sampling period N is set based on the M-th LSB of the number of MSBs of the divider number control signal.
Abstract:
A semiconductor device comprises a guarded circuit. The semiconductor device also comprises a guard ring surrounding the guarded circuit. The semiconductor device further comprises a resonant circuit coupled with the guard ring. The resonant circuit comprises an input node coupled with the guard ring. The resonant circuit also comprises an inductor. The resonant circuit further comprises a capacitor coupled with the inductor. The resonant circuit additionally comprises a ground node configured to carry a ground voltage. The inductor and the capacitor are coupled between the input node and the ground node.
Abstract:
An integrated circuit includes a first die and a second die. The first die comprising a first phase-locked loop (PLL) and the second die comprising a second PLL. The integrated circuit includes a shared loop filter, wherein the first PLL in the first die is combined with the shared loop filter to form a first PLL feedback loop, the second PLL in the second die is combined with the shared loop filter to form a second PLL feedback loop and the shared loop filter is configured to provide configurable bandwidths to each of the first PLL feedback loop and the second PLL feedback loop.