Abstract:
The energization control apparatus can select a supercharging mode in which the energization control apparatus controls energization to an electric compressor so as to rotate the electric compressor to supercharge an intake air and an electric power consumption mode in which the energization control apparatus controls the energization to the electric compressor so as to deteriorate efficiency of a motor of the electric compressor than the supercharging mode to increase electric power consumption of the electric compressor. The energization control apparatus supplies regenerated electric power to the electric compressor and control the energization to the electric compressor with the electric power consumption mode when regenerative braking is performed by a generator and regenerated electric power for obtaining demand regenerative braking force is more than an input limiting level of a battery.
Abstract:
The control apparatus closes the throttle, opens the bypass valve and supplies electric power to the electric compressor in a case where the remaining battery power of the battery is larger than the reference level when regenerative braking is performed with the first motor generator. The electric compressor is provided on the intake passage upstream of the throttle. The bypass valve is provided on the bypass passage that bypasses the electric compressor. According to the hybrid vehicle configured as above, regenerative braking force to be required can be obtained by performing electric power regeneration using the generator even when there is a constraint on regenerated electric power that the battery can accept.
Abstract:
A control device of an electric vehicle includes: a target rotation speed calculation unit that calculates a target rotation speed of a drive wheel based on a vehicle body speed; and a slip control unit that detects a slip of the drive wheel when a wheel speed exceeds the target rotation speed of the drive wheel and that controls motor torque of the motor in such a manner that the wheel speed becomes an appropriate rotation speed in detection of the slip. Further, the slip control unit controls the motor torque by feedback control according to a difference between the rotation speed of the motor and the target rotation speed of the drive wheel in detection of the slip.
Abstract:
An exhaust turbine power generation system includes an internal combustion engine in which each cylinder includes an intake opening portion, a first exhaust opening portion, and a second exhaust opening portion; an exhaust turbine power generator in which a turbine is rotated by exhaust gas from the internal combustion engine to generate electric power; an intake pipe that is connected to the intake opening portion; a first exhaust pipe that connects the first exhaust opening portion to an inlet portion of the turbine; a second exhaust pipe that connects the second exhaust opening portion to a turbine-downstream exhaust pipe downstream of the turbine such that the second exhaust pipe bypasses the turbine; and an exhaust gas recirculation pipe that connects the second exhaust pipe to the intake pipe without being connected to the first exhaust pipe.
Abstract:
The variable compression ratio internal combustion engine 1 comprises: a variable compression ratio mechanism 6 able to change a mechanical compression ratio; an exhaust promotion mechanism 50, 55 able to reduce cylinder residual gas after an exhaust stroke of cylinders; and a control device 80 configured to control the mechanical compression ratio by the variable compression ratio mechanism and control an operation of the exhaust promotion mechanism. The control device is configured to operate the exhaust promotion mechanism in at least a partial time period of a time period from when it is demanded that the mechanical compression ratio be raised to when the mechanical compression ratio finishes being changed.
Abstract:
A control apparatus for an engine is configured to control the engine provided with: an exhaust-driven supercharger, provided with an adjusting mechanism which can change supercharging efficiency according to an opening degree, in an exhaust passage, and having a first control mode and a second control mode as a control mode of the adjusting mechanism, the first control mode allowing the opening degree to be maintained at a maximum supercharging efficiency opening degree at which the exhaust-driven supercharger has maximum supercharging efficiency without using a deviation between a target supercharging pressure and an actual supercharging pressure, the second control mode allowing the deviation to be fed back to the opening degree; and an electrically-driven supercharger driven by electric power supplied from a power supply. The control apparatus is provided with: a determining device configured to determine whether or not an electrified amount of the electrically-driven supercharger decreases; and a maintaining device configured to maintain the control mode in the first control mode before it is determined that the electrified amount decreases.
Abstract:
The object of the invention is to provide a cooling device for accomplishing both of required engine and compressor cooling degrees. The invention relates to a cooling device for an engine provided with a blowby gas recirculation device (50) and a turbocharger (60), the blowby gas recirculation device recirculating a blowby gas to an intake passage upstream of a compressor of the turbocharger. The cooling device comprises a first cooling device (70) for cooling a body (20) of the engine and a second cooling device (80) for cooling an intake air, separately. The second cooling device cools the compressor (61).