摘要:
The present disclosure relates to a self-aligned split gate memory cell, and an associated method. The self-aligned split gate memory cell has memory gate and select gate covered upper surfaces by some spacers. Thus the memory gate and select gate are protected from silicide. The memory gate and select gate are defined self-aligned by the said spacers. The memory gate and select gate are formed by etching back corresponding conductive materials not covered by the spacers instead of recess processes. Thus the memory gate and select gate have flat upper surfaces and are well defined. The disclosed device and method is also capable of further scaling since photolithography processes are reduced.
摘要:
An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
摘要:
Semiconductor structures are provided. The semiconductor structure includes a substrate and a first gate electrode formed over the substrate. The semiconductor structure further includes a dielectric layer formed on a sidewall of the first gate electrode and a second gate electrode formed over the substrate and separated from the first gate electrode by the dielectric layer. The semiconductor structure further includes a contact formed over the second gate electrode. In addition, the contact has a first extending portion and a second extending portion extending along opposite sidewalls of the second gate electrode.
摘要:
An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
摘要:
Some embodiments of the present disclosure relate to a split gate memory cell which includes a select gate and a memory gate. The select gate has a planar upper surface disposed over a semiconductor substrate and is separated from the substrate by a gate dielectric layer. The memory gate has a planar upper surface arranged at one side of the select gate and is separated from the substrate by a charge trapping layer. The charge trapping layer extends under the memory gate. A first spacer is disposed above the memory gate and is separated from the memory gate by a first dielectric liner. The first dielectric liner extends upwardly along an upper sidewall of the charge trapping layer; and source/drain regions are disposed in the semiconductor substrate at opposite sides of the select gate and the memory gate.
摘要:
An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
摘要:
An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
摘要:
Embodiments of mechanisms of a semiconductor device structure are provided. The semiconductor device structure includes a substrate and a word line cell disposed over the substrate. The semiconductor device further includes a memory gate disposed over the substrate and adjacent to the word line cell and a spacer on a sidewall of the memory gate. The spacer and the word line cell are at opposite sides of the memory gate. In addition, an angle between a top surface of the memory gate and a sidewall of the memory gate is in a range from about 75° to about 90°.
摘要:
Methods for forming semiconductor structures are provided. The method for forming the semiconductor structure includes forming a control gate over a substrate and forming a dielectric layer covering the control gate. The method further includes forming a conductive layer having a first portion and a second portion over the dielectric layer. In addition, the first portion of the conductive layer is separated from the control gate by the dielectric layer. The method further includes forming an oxide layer on a top surface of the first portion of the conductive layer and removing the second portion of the conductive layer to form a memory gate.
摘要:
Methods for forming semiconductor structures are provided. The method for forming the semiconductor structure includes forming a word line cell over a substrate and forming a dielectric layer over the word line cell. The method further includes forming a conductive layer over the dielectric layer and polishing the conductive layer until the dielectric layer is exposed. The method further includes forming an oxide layer on a top surface of the conductive layer and removing portions of the conductive layer not covered by the oxide layer to form a memory gate.