摘要:
The present invention can realize a highly-integrated semiconductor device having a MONOS type nonvolatile memory cell equipped with a split gate structure without deteriorating the reliability of the device. A memory gate electrode of a memory nMIS has a height greater by from 20 to 100 nm than that of a select gate electrode of a select nMIS so that the width of a sidewall formed over one (side surface on the side of a source region) of the side surfaces of the memory gate electrode is adjusted to a width necessary for achieving desired disturb characteristics. In addition, a gate electrode of a peripheral second nMIS has a height not greater than the height of a select gate electrode of a select nMIS to reduce the width of a sidewall formed over the side surface of the gate electrode of the peripheral second nMIS so that a shared contact hole is prevented from being filled with the sidewall.
摘要:
The present invention can realize a highly-integrated semiconductor device having a MONOS type nonvolatile memory cell equipped with a split gate structure without deteriorating the reliability of the device. A memory gate electrode of a memory nMIS has a height greater by from 20 to 100 nm than that of a select gate electrode of a select nMIS so that the width of a sidewall formed over one (side surface on the side of a source region) of the side surfaces of the memory gate electrode is adjusted to a width necessary for achieving desired disturb characteristics. In addition, a gate electrode of a peripheral second nMIS has a height not greater than the height of a select gate electrode of a select nMIS to reduce the width of a sidewall formed over the side surface of the gate electrode of the peripheral second nMIS so that a shared contact hole is prevented from being filled with the sidewall.
摘要:
In a power feeding region of a memory cell (MC) in which a sidewall-shaped memory gate electrode (MG) of a memory nMIS (Qnm) is provided by self alignment on a side surface of a selection gate electrode (CG) of a selection nMIS (Qnc) via an insulating film, a plug (PM) which supplies a voltage to the memory gate electrode (MG) is embedded in a contact hole (CM) formed in an interlayer insulating film (9) formed on the memory gate electrode (MG) and is electrically connected to the memory gate electrode (MG). Since a cap insulating film (CAP) is formed on an upper surface of the selection gate electrode (CG), the electrical conduction between the plug (PM) and the selection gate electrode (CG) can be prevented.
摘要:
In a power feeding region of a memory cell (MC) in which a sidewall-shaped memory gate electrode (MG) of a memory nMIS (Qnm) is provided by self alignment on a side surface of a selection gate electrode (CG) of a selection nMIS (Qnc) via an insulating film, a plug (PM) which supplies a voltage to the memory gate electrode (MG) is embedded in a contact hole (CM) formed in an interlayer insulating film (9) formed on the memory gate electrode (MG) and is electrically connected to the memory gate electrode (MG). Since a cap insulating film (CAP) is formed on an upper surface of the selection gate electrode (CG), the electrical conduction between the plug (PM) and the selection gate electrode (CG) can be prevented.
摘要:
A memory cell of a nonvolatile memory and a capacitive element are formed over the same semiconductor substrate. The memory cell includes a control gate electrode formed over the semiconductor substrate via a first insulating film, a memory gate electrode formed adjacent to the control gate electrode over the semiconductor substrate via a second insulating film, and the second insulating film having therein a charge storing portion. The capacitive element includes a lower electrode formed of the same layer of a silicon film as the control gate electrode, a capacity insulating film formed of the same insulating film as the second insulating film, and an upper electrode formed of the same layer of a silicon film as the memory gate electrode. The concentration of impurities of the upper electrode is higher than that of the memory gate electrode.
摘要:
A semiconductor device with a nonvolatile memory is provided which has improved characteristics. The semiconductor device includes a control gate electrode, a memory gate electrode disposed adjacent to the control gate electrode, a first insulating film, and a second insulating film including therein a charge storing portion. Among these components, the memory gate electrode is formed of a silicon film including a first silicon region positioned over the second insulating film, and a second silicon region positioned above the first silicon region. The second silicon region contains p-type impurities, and the concentration of p-type impurities of the first silicon region is lower than that of the p-type impurities of the second silicon region.
摘要:
The invention provides a semiconductor memory device comprising a plurality of word lines, a plurality of bit lines, and a plurality of static memory cells each having a first, second, third, fourth, fifth, and sixth transistors. While each of channels of the first, second, third, and fourth transistors are formed vertical against a substrate of the semiconductor memory device. Each of semiconductor regions forming a source or a drain of the fifth and sixth transistors forms a PN junction against the substrate. According to another aspect of the invention, the SRAM device of the invention has a plurality of SRAM cells, at least one of which is a vertical SRAM cell comprising at least four vertical transistors onto a substrate, and each vertical transistor includes a source, a drain, and a channel therebetween aligning in one aligning line which penetrates into the substrate surface at an angle greater than zero degree.
摘要:
A method of manufacture of a semiconductor device includes forming a gate insulating film and gate electrode made of polycrystalline silicon over a semiconductor substrate; implanting ions into the semiconductor substrate to form a semiconductor region as a source or drain; forming a cobalt film and a titanium nitride film over the semiconductor substrate to cover the gate electrode; carrying out annealing to cause a reaction between Co and Si and the semiconductor region to form a CoSi layer; carrying out wet cleaning to remove the titanium nitride film and unreacted cobalt film to leave the CoSi layer over the gate electrode and semiconductor region; carrying out annealing to cause a reaction between the CoSi layer and the gate electrode and semiconductor region to form a CoSi2 layer; carrying out HPM cleaning; and forming over the semiconductor substrate a silicon nitride film by low-pressure CVD to cover the gate electrode.
摘要:
A method of manufacture of a semiconductor device includes forming a gate insulating film and a gate electrode made of polycrystalline silicon over a semiconductor substrate; implanting ions into the semiconductor substrate to form a semiconductor region as a source or drain; forming a cobalt film and a titanium nitride film over the semiconductor substrate to cover the gate electrode; carrying out annealing to cause a reaction between Co and Si and the semiconductor region to form a CoSi layer; carrying out wet cleaning to remove the titanium nitride film and unreacted cobalt film to leave the CoSi layer over the gate electrode and semiconductor region; carrying out annealing to cause a reaction between the CoSi layer and the gate electrode and semiconductor region to form a CoSi2 layer; carrying out HPM cleaning; and forming over the semiconductor substrate a silicon nitride film by low-pressure CVD to cover the gate electrode.
摘要:
Manufacturing a semiconductor device avoiding an increase of transistor leak current or reduction of the withstanding voltage characteristics is by at least one of: The pad oxide film is removed along the substrate surface from the upper edge of the groove over a distance ranging from 5 to 40 nm: The exposed surface of the semiconductor substrate undergoes removal by isotropic etching within 20 nm; and oxidizing a groove portion formed in a semiconductor substrate in an oxidation environment with a gas ratio of hydrogen (H2) to oxygen (O2) being less than or equal to 0.5, an increase of the curvature radius beyond 3nm is achieved without associating the risk of creation of any level difference on the substrate surface at or near the upper groove edge portions in a groove separation structure. This eliminates either an increase of transistor leak current or reduction of the withstanding voltage characteristics thereof otherwise occurring due to local electric field concentration near or around the terminate ends of a gate electrode film which in turn leads to an ability to improve electrical reliability of transistors used.