摘要:
An object of the present invention is to provide a method for manufacturing a thin film transistor which enables heat treatment aimed at improving characteristics of a gate insulating film such as lowering of an interface level or reduction in a fixed charge without causing a problem of misalignment in patterning due to expansion or shrinkage of glass. A method for manufacturing a thin film transistor of the present invention comprises the steps of heat-treating in a state where at least a gate insulating film is formed over a semiconductor film on which element isolation is not performed, simultaneously isolating the gate insulating film and the semiconductor film into an element structure, forming an insulating film covering a side face of an exposed semiconductor film, thereby preventing a short-circuit between the semiconductor film and a gate electrode. Expansion or shrinkage of a glass substrate during the heat treatment can be prevented from affecting misalignment in patterning since the gate insulating film and the semiconductor film are simultaneously processed into element shapes after the heat treatment.
摘要:
It is an object of the present invention to provide a reliable display device and a method for manufacturing the display device reducing the number of manufacturing steps, and with higher yield. A display device according to the invention includes a plurality of display elements each having a first electrode, a layer containing an organic compound, and a second electrode. The display device further includes a heat-resistant planarizing film over a substrate having an insulating surface, a first electrode over the heat-resistant planarizing film, a wiring covering an end portion of the first electrode, a partition wall covering the end portion of first electrode and the wiring, a layer containing an organic compound, and a second electrode over the layer containing an organic compound.
摘要:
It is an object of the present invention to provide a reliable display device and a method for manufacturing the display device reducing the number of manufacturing steps, and with higher yield. A display device according to the invention includes a plurality of display elements each having a first electrode, a layer containing an organic compound, and a second electrode. The display device further includes a heat-resistant planarizing film over a substrate having an insulating surface, a first electrode over the heat-resistant, planarizing film, a wiring covering an end portion of the first electrode, a partition wall covering the end portion of first electrode and the wiring, a layer containing an organic compound, and a second electrode over the layer containing an organic compound.
摘要:
An object of the present invention is to apply an insulating film of cure and high quality that is suitably applicable as gate insulating film and protective film to a technique that the insulating film is formed on the glass substrate under a temperature of strain point or lower, and to a semiconductor device realizing high efficiency and high reliability by using it. In a semiconductor device of the present invention, a gate insulating film of a field effect type transistor with channel length of from 0.35 to 2.5 μm in which a silicon nitride film is formed over a crystalline semiconductor film through a silicon oxide film, wherein the silicon nitride film contains hydrogen with the concentration of 1×1021/cm3 or less and has characteristic of an etching rate of 10 nm/min or less with respect to mixed solution containing an ammonium hydrogen fluoride (NH4HF2) of 7.13% and an ammonium fluoride (NH4F) of 15.4%.
摘要:
An embodiment is to include an inverted staggered (bottom gate structure) thin film transistor in which an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer and a buffer layer is provided between the semiconductor layer and a source and drain electrode layers. The buffer layer having higher carrier concentration than the semiconductor layer is provided intentionally between the source and drain electrode layers and the semiconductor layer, whereby an ohmic contact is formed.
摘要:
To provide a transistor having a favorable electric characteristics and high reliability and a display device including the transistor. The transistor is a bottom-gate transistor formed using an oxide semiconductor for a channel region. An oxide semiconductor layer subjected to dehydration or dehydrogenation through heat treatment is used as an active layer. The active layer includes a first region of a superficial portion microcrystallized and a second region of the rest portion. By using the oxide semiconductor layer having such a structure, a change to an n-type, which is attributed to entry of moisture to the superficial portion or elimination of oxygen from the superficial portion, and generation of a parasitic channel can be suppressed. In addition, contact resistance between the oxide semiconductor layer and source and drain electrodes can be reduced.
摘要:
Provided is an oxide semiconductor film which has more stable electric characteristics and essentially consists of indium zinc oxide. In addition, provided is a highly reliable semiconductor device which has stable electric characteristics by using the oxide semiconductor film. The oxide semiconductor film essentially consisting of indium zinc oxide has a hexagonal crystal structure in which the a-b plane is substantially parallel to a surface of the oxide semiconductor film and a rhombohedral crystal structure in which the a-b plane is substantially parallel to the surface of the oxide semiconductor film.
摘要:
An oxide semiconductor film which has more stable electric conductivity is provided. Further, a semiconductor device which has stable electric characteristics and high reliability is provided by using the oxide semiconductor film. An oxide semiconductor film includes a crystalline region, and the crystalline region includes a crystal in which an a-b plane is substantially parallel with a surface of the film and a c-axis is substantially perpendicular to the surface of the film; the oxide semiconductor film has stable electric conductivity and is more electrically stable with respect to irradiation with visible light, ultraviolet light, and the like. By using such an oxide semiconductor film for a transistor, a highly reliable semiconductor device having stable electric characteristics can be provided.
摘要:
An object is to suppress deterioration of element characteristics even when an oxide semiconductor is formed after a gate insulating layer, a source electrode layer, and a drain electrode layer are formed. A gate electrode layer is formed over a substrate. A gate insulating layer is formed over the gate electrode layer. A source electrode layer and a drain electrode layer are formed over the gate insulating layer. Surface treatment is performed on surfaces of the gate insulating layer, the source electrode layer, and the drain electrode layer which are formed over the substrate. After the surface treatment is performed, an oxide semiconductor layer is formed over the gate insulating layer, the source electrode layer, and the drain electrode layer.
摘要:
The semiconductor device includes a thin film transistor; a first interlayer insulating film over the thin film transistor; a first electrode electrically connected to one of a source region and a drain region, over the first interlayer insulating film; a second electrode electrically connected to the other of the source region and the drain region; a second interlayer insulating film formed over the first interlayer insulating film, the first electrode, and the second electrode; a first wiring electrically connected to one of the first electrode and the second electrode, on the second interlayer insulating film; and a second wiring not electrically connected to the other of the first electrode and the second electrode, on the second interlayer insulating film; in which the second wiring is not electrically connected to the other of the first electrode and the second electrode by a separation region formed in the second interlayer insulating film.