摘要:
An infrared sensor manufacturing method according to this invention includes a step of forming a bridge structure of an insulating material on an Si substrate, a step of forming a vanadium oxide thin film on the bridge structure by a dry film forming method, a step of irradiating laser light onto the vanadium oxide thin film to thereby change material properties thereof, a step of forming the vanadium oxide thin film with the changed material properties into a bolometer resistor having a predetermined pattern, and a step of forming a protective layer of an insulating material so as to cover the bolometer resistor having the predetermined pattern and the bridge structure.
摘要:
An infrared sensor manufacturing method according to this invention includes a step of forming a bridge structure of an insulating material on an Si substrate, a step of forming a vanadium oxide thin film on the bridge structure by a dry film forming method, a step of irradiating laser light onto the vanadium oxide thin film to thereby change material properties thereof, a step of forming the vanadium oxide thin film with the changed material properties into a bolometer resistor having a predetermined pattern, and a step of forming a protective layer of an insulating material so as to cover the bolometer resistor having the predetermined pattern and the bridge structure.
摘要:
A metal complex composition containing complexes having metal species of a rare earth element, barium and copper and ligands of a trifluoroacetic acid or pentafluoropropionic acid ligand, a pyridine ligand and an acetylacetone ligand. A superconductive film may be obtained by applying an organic solvent solution of the above metal complex composition to a substrate and by heat treating the coating.
摘要:
In an infrared ray sensor for a bolometer, a bridge structure body, a resistive element film for the bolometer, and a protection film is formed via a space on a substrate, and is formed into a solution form by dissolving metal organic compound into solvent. The solution is applied and dried. A laser ray is irradiated for the solution with wavelength of 400 nm or less. A bond between carbon and oxygen is decomposed and cut to thereby form an oxide thin-film.
摘要:
An oxide for use in a bolometer with an oxide thin-film formed is manufactured on an insulating substrate. Metal organic compound is dissolved in solvent to form solution during manufacturing the oxide thin-film. The solution is applied on the insulating substrate, and the applied solution is dried. A bond between carbon and oxygen is cut and decomposed by irradiating a laser ray with wavelength of 400 nm or less. A generated oxide is crystallized.
摘要:
There is disclosed a method for producing a metal oxide, which comprises the steps of: dissolving a metal organic compound (e.g. a metal organic acid salt, a metal acetylacetonato complex, and a metal alkoxide having an organic group with 6 or more carbon atoms) in a solvent to provide a state of solution, applying the solution onto a substrate, drying the solution, and subjecting the resultant substrate to irradiation with a laser light of a 400 nm or less wavelength, to form a metal oxide on the substrate. According to that method, a metal oxide can be produced without applying a heat treatment at a high temperature of the degree adopted in the conventionally known application thermal decomposition method.
摘要:
Provided is a resistor film comprising vanadium oxide as a main component, wherein metal-to-insulator transition is indicated in the vicinity of room temperature in temperature variations of electric resistance, there is no hysteresis in a resistance change in response to temperature variations or the temperature width is small at less than 1.5K even if there is hysteresis, and highly accurate measurement can be provided when used in a bolometer.Upon producing the resistor film comprising vanadium oxide as a main component by treating a coating film of an organovanadium compound via laser irradiation or the like, a crystalline phase and a noncrystalline (amorphous) phase are caused to coexist in the resistor film.
摘要:
Provided is a manufacturing method of a crystallized rare-earth thin films on a glass or a silicon substrate. This manufacturing method of a crystallized metal oxide thin film includes a step of retaining an metal organic thin film or a metal oxide film containing at least one type of rare-earth metal element selected from a group comprised of Y, Dy, Sm, Gd, Ho, Eu, Tm, Tb, Er, Ce, Pr, Yb, La, Nd and Lu formed on a substrate at a temperature of 250 to 600° C., and a step of crystallizing the organic metal thin film or the metal oxide film while irradiating ultraviolet radiation having a wavelength of 200 nm or less.
摘要:
Provided is a manufacturing method of a high-performance phosphor thin film material that enables a crystallized pervoskite-related Ti, Zr oxide thin film to be formed on a glass or a silicon substrate. This manufacturing method of a phosphor thin film includes a step of forming an organic metal thin film or a metal oxide film obtained by adding at least one element selected from a group comprised of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu to a metal oxide represented with a composition formula of ABO3, A2BO4, A3B2O7 (provided that there may be a deficiency at the A, B, O sites) wherein A is an element selected from Ca, Sr and Ba, and B is a metal element selected from Ti and Zr on a substrate, and a step of irradiating an ultraviolet lamp to the substrate at room temperature and thereafter irradiating an ultraviolet laser thereto while retaining the substrate at a temperature of 400° C. or less. The film is subject to oxidation treatment after being crystallized.
摘要翻译:提供一种能够在玻璃或硅衬底上形成结晶的与渗透相关的Ti,Zr氧化物薄膜的高性能荧光体薄膜材料的制造方法。 这种荧光体薄膜的制造方法包括:形成通过添加选自由Ce,Pr,Nd,Sm,Eu,Gd,Tb等构成的组中的至少一种的有机金属薄膜或金属氧化物膜的工序, Dy,Ho,Er,Tm,Yb和Lu与由组成式ABO 3,A 2 BO 4表示的金属氧化物反应, A 3,B 2 O 7(前提是A,B,O位点可能存在缺陷),其中A是选择的元素 从Ca,Sr和Ba中选出,B是在基板上选自Ti和Zr的金属元素,以及在室温下向紫外灯照射紫外线,然后在保持基板的同时照射紫外线激光的步骤 400℃以下。 在结晶后,将该膜进行氧化处理。
摘要:
A method of producing a superconductive material involves the step (1) of applying a solution of an organic compound of metals and oxides of the metals forming a superconductive material, onto a support body to be subsequently dried, the provisional baking step (2) of causing organic components of the organic compound of the metals to undergo thermal decomposition, and the main baking process step (3) of causing transformation of the oxides of the metals into the superconductive material, thereby producing an epitaxially-grown superconductive coating material, wherein the support body is irradiated with the laser light during a period between the steps (1) and (2) from a surface of the support body, on the opposite side of the surface coated with the solution of the organic compound of the metals for forming the superconductive material.