摘要:
A method of reworking copper metallurgy on semiconductor devices which includes selective removal of insulator, selective removal of copper, non-selective removal of copper and insulator followed by the redeposition of an insulating copper barrier layer and at least one metallurgical interconnect layer.
摘要:
The disclosure relates generally to integrated circuits (IC), IC interconnects, and methods of fabricating the same, and more particularly, high performance inductors. The IC includes at least one trench within a dielectric layer disposed on a substrate. The trench is conformally coated with a liner and seed layer, and includes an interconnect within. The interconnect includes a hard mask on the sidewalls of the interconnect.
摘要:
Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
摘要:
A BEOL thin-film resistor adapted for flexible integration rests on a first layer of ILD. The thickness of the first layer of ILD and the resistor thickness combine to match the nominal design thickness of vias in the layer of concern. A second layer of ILD matches the resistor thickness and is planarized to the top surface of the resistor. A third layer of ILD has a thickness equal to the nominal value of the interconnections on this layer. Dual damascene interconnection apertures and apertures for making contact with the resistor are formed simultaneously, with the etch stop upper cap layer in the resistor protecting the resistive layer while the vias in the dual damascene apertures are formed.
摘要:
Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
摘要:
Ferro-electric capacitor modules, methods of manufacture and design structures. The method of manufacturing the ferro-electric capacitor includes forming a barrier layer on an insulator layer of a CMOS structure. The method further includes forming a top plate and a bottom plate over the barrier layer. The method further includes forming a ferro-electric material between the top plate and the bottom plate. The method further includes encapsulating the barrier layer, top plate, bottom plate and ferro-electric material with an encapsulating material. The method further includes forming contacts to the top plate and bottom plate, through the encapsulating material. At least the contact to the top plate and a contact to a diffusion of the CMOS structure are in electrical connection through a common wire.
摘要:
A BEOL thin-film resistor adapted for flexible integration rests on a first layer of ILD. The thickness of the first layer of ILD and the resistor thickness combine to match the nominal design thickness of vias in the layer of concern. A second layer of ILD matches the resistor thickness and is planarized to the top surface of the resistor. A third layer of ILD has a thickness equal to the nominal value of the interconnections on this layer. Dual damascene interconnection apertures and apertures for making contact with the resistor are formed simultaneously, with the etch stop upper cap layer in the resistor protecting the resistive layer while the vias in the dual damascene apertures are formed.
摘要:
The present invention in one embodiment provides a method of forming a memory device that includes providing an interlevel dielectric layer including a conductive stud having a first width; forming an stack comprising a metal layer and a first insulating layer; forming a second insulating layer atop portions of the interlevel dielectric layer adjacent each sidewall of the stack; removing the first insulating layer to provide a cavity; forming a conformal insulating layer atop the second insulating layer and the cavity; applying an anisotropic etch step to the conformal insulating layer to produce a opening having a second width exposing an upper surface of the metal layer, wherein the first width is greater than the second width; and forming a memory material layer in the opening.
摘要:
The present invention in one embodiment provides a method of forming a memory device that includes providing an interlevel dielectric layer including a conductive stud having a first width; forming an stack comprising a metal layer and a first insulating layer; forming a second insulating layer atop portions of the interlevel dielectric layer adjacent each sidewall of the stack; removing the first insulating layer to provide a cavity; forming a conformal insulating layer atop the second insulating layer and the cavity; applying an anisotropic etch step to the conformal insulating layer to produce a opening having a second width exposing an upper surface of the metal layer, wherein the first width is greater than the second width; and forming a memory material layer in the opening.