摘要:
P-type impurity induced layer disordering (IILD) in compound semiconductor structures or multilayer semiconductor material structures is produced by providing a source of a disordering agent during annealing multiple layers of III-V semiconductor material at high temperature under Group III material-rich conditions. For example, diffusion of silicon causes impurity induced layer disordering of GaAs/AlGaAs quantum well structures. By diffusing the silicon under gallium-rich conditions or from a gallium-rich source layer, the desired disordering is achieved simultaneously with p-type doped material. Silicon is an amphoteric dopant in gallium arsenide. Silicon occupies the gallium and arsenic sites with comparable frequencies with predominantly occupied site determined by the arsenic and gallium chemical potentials. Diffusion of silicon causes impurity induced layer disordering (IILD) of GaAs/AlGaAs quantum well structures. In this method, silicon is used to produce layer disordering in GaAs/AlGaAs heterostructures. The heterostructure material doped with silicon is annealed under extreme gallium-rich conditions or under a gallium-rich source layer to achieve the desired disordering simultaneously p-type doped material.
摘要:
Novel semiconductor devices are monolithically defined with p-type and n-type wide bandgap material formed by impurity induced layer disordering of selected regions of multiple semiconductor layers. The devices are beneficially fabricated by simultaneously forming the n-type and p-type layer disordered regions with sufficiently abrupt transitions from disordered to as-grown material. The novel devices include a heterojunction bipolar transistor monolithically integrated with an edge emitting heterostructure laser or a surface emitting laser, a heterostructure surface emitting laser, a heterostructure surface emitting laser having active distributed feedback, devices containing multiple buried layers which are individually contacted such as p-n junction surface emitting lasers, carrier channeling devices, and "n-i-p-i" or hetero "n-i-p-i" devices, and novel interdigitated structures, such as optical detectors and distributed feedback lasers.
摘要:
Novel semiconductor devices are monolithically defined with p-type and n-type wide bandgap material formed by impurity induced layer disordering of selected regions of multiple semiconductor layers. The devices are beneficially fabricated by simultaneously forming the n-type and p-type layer disordered regions with sufficiently abrupt transitions from disordered to as-grown material. The novel devices include a heterojunction bipolar transistor monolithically integrated with an edge emitting heterostructure laser or a surface emitting laser, a heterostructure surface emitting laser, a heterostructure surface emitting laser having active distributed feedback, devices containing multiple buried layers which are individually contacted such as p-n junction surface emitting lasers, carrier channeling devices, and "n-i-p-i" or hetero "n-i-p-i" devices, and novel interdigitated structures, such as optical detectors and distributed feedback lasers.
摘要:
Novel semiconductor devices are monolithically defined with p-type and n-type wide bandgap material formed by impurity induced layer disordering of selected regions of multiple semiconductor layers. The devices are beneficially fabricated by simultaneously forming the n-type and p-type layer disordered regions with sufficiently abrupt transitions from disordered to as-grown material. The novel devices include a heterojunction bipolar transistor monolithically integrated with an edge emitting heterostructure laser or a surface emitting laser, a heterostructure surface emitting laser, a heterostructure surface emitting laser having active distributed feedback, devices containing multiple buried layers which are individually contacted such as p-n junction surface emitting lasers, carrier channeling devices, and "n-i-p-i" or hetero "n-i-p-i" devices, and novel interdigitated structures, such as optical detectors and distributed feedback lasers.
摘要:
Light emitting devices having an enhanced degree of polarization, PD, and methods for fabricating such devices are described. A light emitting device may include a light emitting region that is configured to emit light having a central wavelength, λ, and a degree of polarization, PD, where PD>0.006λ−b for 200 nm≦λ≦400 nm, wherein b≦1.5.
摘要:
A semiconductor device includes group III-V layers formed over a substrate. At least one of the group III-V layers is doped with a dopant. The dopant includes a first dopant and one of a second dopant and an isovalent impurity. The first dopant has a covalent radius different in size than the covalent radii of each of the second dopant and the isovalent impurity.
摘要:
A first side has a first surface on which is located a material, at least a portion of which is to be formed into at least one tip. A second side has a second surface which is heated. At least one of the first and second surfaces being moved so material located on the first surface comes into physical contact with the second surface. Then at least one of the first side and the second side are moved, wherein the physical contact between the material and the second surface is maintained, causing the material to stretch between the second surface and the first surface, generating at least one capillary bridge. Movement is continued until the physical contact between the material and the second surface is broken resulting in the formation of at least one sharp conductive tip.
摘要:
A structure and method for producing same provides a solid-state light emitting device with suppressed lattice defects in epitaxially formed nitride layers over a non-c-plane oriented (e.g., semi-polar) template or substrate. A dielectric layer with “window” openings or trenches provides significant suppression of all diagonally running defects during growth. Posts of appropriate height and spacing may further provide suppression of vertically running defects. A layer including gallium nitride is formed over the dielectric layer, and polished to provide a planar growth surface with desired roughness. A tri-layer indium gallium nitride active region is employed. For laser diode embodiments, a relatively thick aluminum gallium nitride cladding layer is provided over the gallium nitride layer.
摘要:
A structure and method for producing same provides a solid-state light emitting device with suppressed lattice defects in epitaxially formed nitride layers over a non-c-plane oriented (e.g., semi-polar) template or substrate. A dielectric layer with “window” openings or trenches provides significant suppression of all diagonally running defects during growth. Posts of appropriate height and spacing may further provide suppression of vertically running defects. A layer including gallium nitride is formed over the dielectric layer, and polished to provide a planar growth surface with desired roughness. A tri-layer indium gallium nitride active region is employed. For laser diode embodiments, a relatively thick aluminum gallium nitride cladding layer is provided over the gallium nitride layer.
摘要:
A method of fabricating a light emitting device includes modulating a crystal growth parameter to grow a quantum well layer that is inhomogeneous and that has a non-random composition fluctuation across the quantum well layer.