Abstract:
A substrate processing apparatus includes a fluid supply unit that supplies a fluid that includes a pressurized vapor or mist of a purified water, a processing liquid supply unit that supplies a processing liquid that includes at least sulfuric acid, and a nozzle that includes a first discharge port that discharges a fluid that is supplied from the fluid supply unit, a second discharge port that discharges a processing liquid that is supplied from the processing liquid supply unit, and a guiding route that is communicated with the first discharge port and the second discharge port and guides a mixed fluid of a fluid that is discharged from the first discharge port and a processing liquid that is discharged from the second discharge port, where a cross-sectional area of the guiding route is greater than a cross-sectional area of the first discharge port.
Abstract:
A method includes: supplying a processing liquid to a center position of a substrate surface; shifting a supply position of the processing liquid from the center position to a first eccentric position; holding the supply position of the processing liquid at the first eccentric position and supplying a substitute liquid to a second eccentric position; shifting the supply position of the processing liquid in a direction away from the center position, and shifting a supply position of the substitute liquid to the center position; and supplying the processing liquid to the first eccentric position at a first flow rate, and reducing the flow rate of the processing liquid to a second flow rate after the supply position of the processing liquid starts to be shifted from the first eccentric position in the direction and until the supply position of the substitute liquid reaches the center position.
Abstract:
A method includes: supplying a processing liquid to a center position of a substrate surface; shifting a supply position of the processing liquid from the center position to a first eccentric position; holding the supply position of the processing liquid at the first eccentric position and supplying a substitute liquid to a second eccentric position; shifting the supply position of the processing liquid in a direction away from the center position, and shifting a supply position of the substitute liquid to the center position; and supplying the processing liquid to the first eccentric position at a first flow rate, and reducing the flow rate of the processing liquid to a second flow rate after the supply position of the processing liquid starts to be shifted from the first eccentric position in the direction and until the supply position of the substitute liquid reaches the center position.
Abstract:
A substrate processing apparatus includes: a substrate holder configured to hold a substrate; a processing liquid supply part configured to supply a processing liquid to the substrate held by the substrate holder; a chemical liquid supply part configured to supply a chemical liquid as a component of the processing liquid to the processing liquid supply part; a pure water supply part configured to supply pure water as a component of the processing liquid to the processing liquid supply part; a low-dielectric constant solvent supply part configured to supply a low-dielectric constant solvent as a component of the processing liquid to the processing liquid supply part; and a controller configured to control a ratio of the chemical liquid, the pure water, and the low-dielectric constant solvent contained in the processing liquid by controlling the chemical liquid supply part, the pure water supply part, the low-dielectric constant solvent supply part.
Abstract:
A substrate processing apparatus includes a temperature detector, a calculation unit and an execution unit. The temperature detector is configured to detect a temperature of a substrate on which a processing liquid is discharged. The calculation unit is configured to calculate, by using a given calculation formula, an etching amount of the substrate based on the temperature detected by the temperature detector. The execution unit configured to perform an etching processing on the substrate by the processing liquid based on the etching amount.
Abstract:
A substrate processing apparatus includes: a temperature raising part for raising a temperature of a first sulfuric acid; a mixing part for mixing the first sulfuric acid where the temperature is raised by the temperature raising part with a moisture-containing liquid to generate a mixed solution; and a discharging part for discharging the mixed solution onto a substrate inside a substrate processing part. The mixing part includes: a joining portion where a sulfuric acid supply line through which the first sulfuric acid where the temperature is raised by the temperature raising part flows and a liquid supply line through which the first sulfuric acid where the temperature is raised by the temperature raising part and the moisture-containing liquid flows are joined; and a reaction suppression mechanism for suppressing a reaction between the first sulfuric acid and the moisture-containing liquid in the joining portion.
Abstract:
A nozzle that mixes fluid containing steam or mist of pressurized pure water and processing liquid containing at least sulfuric acid and ejects mixed fluid of the fluid and the processing liquid, the nozzle comprising: at least one first ejection port ejecting the fluid; at least one second ejection port ejecting the processing liquid; and at least one lead-out path being in fluid communication with the at least one first ejection port and the at least one second ejection port and leading out the mixed fluid of the fluid ejected from the at least one first ejection port and the processing liquid ejected from the at least one second ejection port, wherein the at least one first ejection port or the at least one second ejection port is arranged to be directed to position deviated from central axis of the at least one lead-out path in a plan view.
Abstract:
A substrate processing apparatus includes a temperature detector, a calculation unit and an execution unit. The temperature detector is configured to detect a temperature of a substrate on which a processing liquid is discharged. The calculation unit is configured to calculate, by using a given calculation formula, an etching amount of the substrate based on the temperature detected by the temperature detector. The execution unit configured to perform an etching processing on the substrate by the processing liquid based on the etching amount.
Abstract:
A wafer is held horizontally and rotated by a substrate holding mechanism. An aqueous alkaline solution is supplied to a wafer by a nozzle and caused to flow from a central portion to a peripheral edge portion of the wafer, thereby etching the wafer. An amount of oxygen, which is equal to or more than the amount of oxygen in atmospheric air involved in the aqueous alkaline solution flowing on the wafer, is previously dissolved in the aqueous alkaline solution.
Abstract:
A substrate processing apparatus includes: a holding unit that holds a substrate; a liquid discharge unit; a first supply unit; a second supply unit; and a control unit that controls each unit. The liquid discharge unit discharges a processing liquid to the substrate held by the holding unit. The first supply unit supplies the processing liquid to the liquid discharge unit. The second supply unit supplies steam to the liquid discharge unit. The second supply unit includes: a steam generator that generates steam; a supply line; a stabilizing mechanism; a pressure gauge that measures a pressure of the steam flowing through the supply line; and a pressure adjustment mechanism. The control unit controls the pressure adjustment mechanism so that the pressure of the steam measured by the pressure gauge becomes a preset pressure.