Abstract:
A method for manufacturing fins includes following steps. A substrate including a plurality of fins formed thereon is provided. At least an ion implantation is performed to the fins. A thermal process is performed after the ion implantation. An insulating layer is formed on the substrate, and the fins are embedded in the insulating layer. Thereafter, a portion of the insulating layer is removed to form an isolation structure on the substrate, and the fins are exposed from a top surface of the isolation structure. The insulating layer is formed after the ion implantation and the thermal process. Or, the isolation structure is formed before the ion implantation, or between the ion implantation and the thermal process.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a pad oxide layer on the substrate, wherein the pad oxide layer comprises a first thickness; performing an implantation process to inject germanium (Ge) into the substrate on the PMOS region; performing a first cleaning process to reduce the first thickness of the pad oxide layer on the PMOS region to a second thickness; performing an anneal process; and performing a second cleaning process to remove the pad oxide layer.
Abstract:
A method for manufacturing fins includes following steps. A substrate including a plurality of fins formed thereon is provided. At least an ion implantation is performed to the fins. A thermal process is performed after the ion implantation. An insulating layer is formed on the substrate, and the fins are embedded in the insulating layer. Thereafter, a portion of the insulating layer is removed to form an isolation structure on the substrate, and the fins are exposed from a top surface of the isolation structure. The insulating layer is formed after the ion implantation and the thermal process. Or, the isolation structure is formed before the ion implantation, or between the ion implantation and the thermal process.
Abstract:
A semiconductor device includes a substrate including a plurality of transistor devices formed thereon, at least an epitaxial structure formed in between the transistor devices, and a tri-layered structure formed on the epitaxial structure. The epitaxial structure includes a first semiconductor material and a second semiconductor material, and a lattice constant of the second semiconductor material is larger than a lattice constant of the first semiconductor material. The tri-layered structure includes an undoped epitaxial layer, a metal-semiconductor compound layer, and a doped epitaxial layer sandwiched in between the undoped epitaxial layer and the metal-semiconductor compound layer. The undoped epitaxial layer and the doped epitaxial layer include at least the second semiconductor material.
Abstract:
An epitaxial structure of semiconductor device includes a substrate, a recess, a first epitaxial layer, a second epitaxial layer, and a third epitaxial layer. The recess is formed in the substrate and disposed near a surface of the substrate, wherein the recess has a recess depth. The first epitaxial layer is disposed on surfaces of a sidewall and a bottom of the recess. The second epitaxial layer is disposed on the surface of the first epitaxial layer, wherein the Ge concentration of the second epitaxial layer is greater than the Ge concentration of the first epitaxial layer. The third epitaxial layer is disposed on the surface of the second epitaxial layer, wherein the Ge concentration of the third epitaxial layer is greater than the Ge concentration of the second epitaxial layer, and the depth of the third epitaxial layer is about ½ to about ¾ of the recess depth.
Abstract:
A semiconductor device includes a substrate, a gate structure, a spacer, and a plurality of hyper-sigma (Σ) shaped epitaxial stressors. The substrate includes a first semiconductor material, and the hyper-Σ shaped epitaxial stressors include the first semiconductor material and a second semiconductor material. A lattice constant of the second semiconductor material is different from a lattice constant of the first semiconductor material. The hyper-Σ shaped epitaxial stressors respectively include a first portion, a second portion and a neck physically connecting the first portion and the second portion. The first portion includes a pair of first tips pointing toward the gate structure in a cross-sectional view. The second portion includes a pair of second tips pointing toward the gate structure in the cross-sectional view. The neck includes a first slanted surface in the first portion and a second slanted surface in the second portion.
Abstract:
An apparatus for semiconductor wafer treatment includes a wafer holding unit configured to receive a single wafer, at least a solution supply unit configured to apply a solution onto the wafer and an irradiation unit configured to emit irradiation to the wafer. The irradiation unit further includes at least a plurality of first light sources configured to emit irradiation in FIR range and a plurality of second light sources configured to emit irradiation in UV range.
Abstract:
A method for manufacturing fins includes following steps. A substrate including a plurality of fins formed thereon is provided. At least an ion implantation is performed to the fins. A thermal process is performed after the ion implantation. An insulating layer is formed on the substrate, and the fins are embedded in the insulating layer. Thereafter, a portion of the insulating layer is removed to form an isolation structure on the substrate, and the fins are exposed from a top surface of the isolation structure. The insulating layer is formed after the ion implantation and the thermal process. Or, the isolation structure is formed before the ion implantation, or between the ion implantation and the thermal process.
Abstract:
The present invention provides a metal oxide semiconductor (MOS) device, including a substrate, a gate structure on the substrate and a source/drain region disposed in the substrate at one side of the gate structure and in at least a part of an epitaxial structure, wherein the epitaxial structure includes a first buffer layer, which is an un-doped buffer layer, including a bottom portion disposed on a bottom surface of the epitaxial structure and a sidewall portion disposed on a concave sidewall of the epitaxial structure, an epitaxial layer which is encompassed by the first buffer layer, and a semiconductor layer which is disposed between the first buffer layer and the epitaxial layer. The source/drain region is disposed in the epitaxial structure.
Abstract:
The present invention provides a method for forming a semiconductor structure, including: first, a substrate is provided. Next, at least two gate structures are formed on the substrate, each gate structure including two spacers disposed on two sides of the gate structure. Afterwards, a dry etching process is performed to remove parts of the substrate, so as to form a recess in the substrate, and a wet etching process is performed, to etch partial sidewalls of the recess, so as to form at least two tips on two sides of the recess respectively. In addition, parts of the spacer are also removed through the wet etching process, and each spacer includes a rounding corner disposed on a bottom surface of the spacer.