摘要:
Provided herein are embodiments of layouts for applying impact ionization potentials across the channel of a selected floating body cell in an array without having to impose the potential on other unselected cells.
摘要:
Provided herein are embodiments of layouts for applying impact ionization potentials across the channel of a selected floating body cell in an array without having to impose the potential on other unselected cells.
摘要:
Described herein is an apparatus for adjusting a power supply level for a memory cell to improve stability of a memory unit. The apparatus comprises memory circuitry including memory cells, error detection circuitry to detect error in data stored by memory cells of the memory circuitry, and supply voltage control circuitry to increase supply voltage for one or more memory cells of the memory circuitry based at least in part on detected error.
摘要:
A cache memory system uses multi-bit Error Correcting Code (ECC) with a low storage and complexity overhead. In an embodiment, error correction logic may include a first error correction logic to determine a number of errors in data that is stored in a cache line of a cache memory, and a second error correction logic to receive the data from the first error correction logic if the number of errors is determined to be greater than one and to perform error correction responsive to receipt of the data. The cache memory system can be operated at very low idle power, without dramatically increasing transition latency to and from an idle power state due to loss of state. Other embodiments are described and claimed.
摘要:
An approach for providing timing-closed FinFET designs from planar designs is disclosed. Embodiments include: receiving one or more planar cells associated with a planar design; generating an initial FinFET design corresponding to the planar design based on the planar cells and a FinFET model; and processing the initial FinFET design to provide a timing-closed FinFET design. Other embodiments include: determining a race condition associated with a path of the initial FinFET design based on a timing analysis of the initial FinFET design; and increasing delay associated with the path to resolve hold violations associated with the race condition, wherein the processing of the initial FinFET design is based on the delay increase.
摘要:
Embodiments of an invention for low overhead error-correcting-code protection for stored information are described are disclosed. In one embodiment, an apparatus includes a data storage structure, a first check value storage structure, a second check value storage structure, and check value generation hardware. The data storage structure is to store a plurality of first data values. The first check value storage structure is to store a plurality of first check values. The second check value storage structure is to store a plurality of second check values. The check value generation hardware is to generate the first check values and the second check values. The first check values provide a first level of error protection for the first data values and the second check values provide a second level of error protection for a plurality of second data values. Each of the plurality of first data value has a first data width, and each of the plurality of second data values has a second data width, the second data width being greater than the first data width. Each of the second data values is a concatenation of one of the first data values and at least another of the first data values.
摘要:
A cache memory system is provided that uses multi-bit Error Correcting Code (ECC) with a low storage and complexity overhead. The cache memory system can be operated at very low idle power, without dramatically increasing transition latency to and from an idle power state due to loss of state.
摘要:
Embodiments of the invention relate to a method of fabricating logic transistors using replacement metal gate (RMG) logic flow with modified process to form recessed channel array transistors (RCAT) on a common semiconductor substrate. An embodiment comprises forming an interlayer dielectric (ILD) layer on a semiconductor substrate, forming a first recess in the ILD layer of a first substrate region, forming a recessed channel in the ILD layer and in the substrate of a second substrate region, depositing a first conformal high-k dielectric layer in the first recess and a second conformal high-k dielectric layer in the recessed channel, and filling the first recess with a first gate metal and the recessed channel with a second gate metal.
摘要:
Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
摘要:
An integrated circuit includes a semiconducting substrate (110), electrically conductive layers (120) over the semiconducting substrate, and a capacitor (130) at least partially embedded within the semiconducting substrate such that the capacitor is entirely underneath the electrically conductive layers. A storage node voltage is on an outside layer (132) of the capacitor. In the same or another embodiment, the integrated circuit may act as a 1T-1C embedded memory cell including the semiconducting substrate, an electrically insulating stack (160) over the semiconducting substrate, a transistor (140) including a source/drain region (142) within the semiconducting substrate and a gate region (141) above the semiconducting substrate, a trench (111) extending through the electrically insulating layers and into the semiconducting substrate, a first electrically insulating layer (131) located within the trench, and the capacitor located within the trench interior to the first electrically insulating layer.