摘要:
A semiconductor device (102) having a plurality of diodes (100) with alterable electrical conductivity by a source of energy (30), e.g., a laser, external to the semiconductor device. The diodes are formed and energy is applied to alter the electrical conductivity at least 10%, and preferably by several orders of magnitude. Certain embodiments (20, 40 and 50) are formed so as to function as anti-fuses, while another embodiment (60) functions as a fuse. The diodes may be formed as planar diodes (20, 40, 50 and 60) or as lateral diodes (70).
摘要:
An IC chip comprising, a nearby or remote source capable of particle emissions; circuitry formed in the IC chip that is adversely affected by impacts of particle emissions from said source; and a particle detector formed in the IC chip between the circuitry and source for detecting said particle emissions. In one embodiment of the present invention, the source comprises a solder ball that is formed on a surface of the IC chip, and the solder ball is capable of emitting alpha-particles. The particle emissions detector of the present invention is a reverse biased Schottky diode. The IC chip is formed by (a) providing an IC chip having at least one layer of particle sensitive circuitry formed therein; (b) forming another layer having at least one particle sensor region situated therein on a surface of said IC chip; and (c) optionally, forming at least one particle emission source over said another layer.
摘要:
A circuit for enabling a controlled transistor in response to an ablated fusible link. The fusible link is configured so that no d.c. potential resides on the link once it has been ablated. A source of alternating voltage is capacitively coupled to the fusible link and maintains the fusible link from reconnection due to dendrite formation once it is ablated. An a.c. to d.c. voltage converter is used to signal the change in condition of the fusible link, thus, actuating a control transistor of a redundant circuit element in a replacement operation.
摘要:
An IC chip comprising, a nearby or remote source capable of particle emissions; circuitry formed in the IC chip that is adversely affected by impacts of particle emissions from said source; and a particle detector formed in the IC chip between the circuitry and source for detecting said particle emissions. In one embodiment of the present invention, the source comprises a solder ball that is formed on a surface of the IC chip, and the solder ball is capable of emitting alpha-particles. The particle emissions detector of the present invention is a reverse biased Schottky diode. The IC chip is formed by (a) providing an IC chip having at least one layer of particle sensitive circuitry formed therein; (b) forming another layer having at least one particle sensor region situated therein on a surface of said IC chip; and (c) optionally, forming at least one particle emission source over said another layer.
摘要:
The invention includes an error correcting logic system that allows critical circuits to be hardened with only one redundant unit and without loss of circuit performance. The system provides an interconnecting gate that suppresses a fault in one of at least two redundant dynamic logic gates that feed to the interconnecting gate. The system is applicable to dynamic or static logic systems. The system prevents propagation of a fault, and addresses not only soft errors, but noise-induced errors. Also, there is provided a design structure embodied in a machine readable medium used in a design process, and which includes such error correcting logic system.
摘要:
Circuit for detecting error transients in logic circuits due to atomic events or other non-recurring noise sources includes a first circuit coupled to a data line for sensing a first signal on the data line at a first point in time (T1) and a second circuit coupled to the data line for sensing the first signal on the data line at a second point in time (T2) such that a time difference between T1 and T2 is small enough so that the first signal is still present on the data line in the absence of a perturbation event and such that the time difference between T1 and T2 is large enough so that any such perturbation event is resolved. A compare circuit coupled to the first and second circuits compares the sensing of the first signal by the first and second circuits, and generates an error signal in response to a non-compare.
摘要:
A radiation detecting system including a radiation detecting section having one or more radiation detecting circuits and a circuit adjustment section for adjusting other circuitry to be protected. Radiation detecting circuits are provided to detect a pulse of radiation and/or a total radiation dose accumulation.
摘要:
Semiconductor chip structures are provided with embedded thermal conductors for removing heat from one or more electrically conductive circuit members thereof, wherein the circuit members are formed on one or more dielectric layers above a substrate, each layer having a low dielectric constant and a low thermal conductivity. One or more cooling posts, for example, multiple thermally conductive plugs, are selectively disposed within the semiconductor chip structure adjacent to one or more electrically conductive members and thermally coupled thereto so that heat produced by the members is transferred into and through the cooling posts for forwarding to the substrate and/or to an upper surface of the semiconductor chip structure. The backside of the substrate has a thermal sink thermally coupled thereto and electrically isolated from the substrate. The thermal sink includes one or more thermally conductive via structures embedded within the substrate and aligned to thermally contact to the cooling posts disposed above the substrate.
摘要:
The invention includes an error correcting logic system that allows critical circuits to be hardened with only one redundant unit and without loss of circuit performance. The system provides an interconnecting gate that suppresses a fault in one of at least two redundant dynamic logic gates that feed to the interconnecting gate. The system is applicable to dynamic or static logic systems. The system prevents propagation of a fault, and addresses not only soft errors, but noise-induced errors.