摘要:
The memory element of the present invention utilizes a substrate, a first conductive connection, a second conductive connection, and an ionic layer. The substrate includes a source region, a drain region, and a channel region, which is disposed between the source region and the drain region. The ionic layer includes ions and is coupled to the substrate. The first connection is coupled to the source region, and the second connection is coupled to the drain region. An electrical field is applied through said ionic layer such that the ions in the ionic layer move. When the memory element is to exhibit a logical high state, the polarity of the electrical field causes the ions to move toward the channel region. This pulls the electrons in the source and drain regions into the channel region making the channel region conductive. When the memory element is to exhibit a logical low state, the polarity of the electrical field causes the ions to move away from the channel region. As a result, the channel region becomes non-conductive, and the first conductive connection is, therefore, insulated from the second conductive connection.
摘要:
Embodiments of the invention generally relate to photovoltaic devices. In one embodiment, a method for forming a gallium arsenide based photovoltaic device includes providing a semiconductor structure, the structure including an absorber layer comprising gallium arsenide. A bypass function is provided in a p-n junction of the semiconductor structure, where under reverse-bias conditions the p-n junction breaks down in a controlled manner by a Zener breakdown effect.
摘要:
A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drift region, a gate region at least partially surrounding the channel region, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction.
摘要:
Methods and apparatus for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells are provided. A photovoltaic (PV) device generally includes a window layer; an absorber layer disposed below the window layer such that electrons are generated when photons travel through the window layer and are absorbed by the absorber layer; and a plurality of contacts for external connection coupled to the absorber layer, such that all of the contacts for external connection are disposed below the absorber layer and do not block any of the photons from reaching the absorber layer through the window layer. Locating all the contacts on the back side of the PV device avoids solar shadows caused by front side contacts, typically found in conventional solar cells. Therefore, PV devices described herein with back side contacts may allow for increased efficiency when compared to conventional solar cells.
摘要:
A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drift region, a gate region at least partially surrounding the channel region, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region. The source includes a GaN-layer coupled to an InGaN layer. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction.
摘要:
A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.
摘要:
An edge terminated semiconductor device is described including a GaN substrate; a doped GaN epitaxial layer grown on the GaN substrate including an ion-implanted insulation region, wherein the ion-implanted region has a resistivity that is at least 90% of maximum resistivity and a conductive layer, such as a Schottky metal layer, disposed over the GaN epitaxial layer, wherein the conductive layer overlaps a portion of the ion-implanted region. A Schottky diode is prepared using the Schottky contact structure.
摘要:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) unit, according to embodiments of the invention, may have a very thin absorber layer produced by epitaxial lift-off (ELO), all electrical contacts positioned on the back side of the PV device to avoid shadowing, and/or front side and back side light trapping employing a diffuser and a reflector to increase absorption of the photons impinging on the front side of the PV unit. Several PV units may be combined into PV banks, and an array of PV banks may be connected to form a PV module with thin strips of metal or conductive polymer applied at low temperature. Such innovations may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
摘要:
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
摘要:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) device may incorporate front side and/or back side light trapping techniques in an effort to absorb as many of the photons incident on the front side of the PV device as possible in the absorber layer. The light trapping techniques may include a front side antireflective coating, multiple window layers, roughening or texturing on the front and/or the back sides, a back side diffuser for scattering the light, and/or a back side reflector for redirecting the light into the interior of the PV device. With such light trapping techniques, more light may be absorbed by the absorber layer for a given amount of incident light, thereby increasing the efficiency of the PV device.