摘要:
Provided are a substrate for a printed wiring board, and a printed wiring board, which are not limited in size because vacuum equipment is not necessary for the production, in which an organic adhesive is not used, and which can include a conductive layer (copper foil layer) having a sufficiently small thickness. Also provided are a method for producing the substrate for a printed wiring board, and a method for producing the printed wiring board. A substrate 1 for a printed wiring board includes an insulating base 11, a first conductive layer 12 that is stacked on the insulating base 11, and a second conductive layer 13 that is stacked on the first conductive layer 12, in which the first conductive layer 12 is a coating layer composed of a conductive ink containing metal particles, and the second conductive layer 13 is a plating layer.
摘要:
A method of producing metal powder by reducing ions of a metal for precipitation by performance of a reducing agent in a liquid-phase reaction system, wherein the metal is precipitated as metal powder particles by being reduced under conditions in which the exchange-current density of an oxidation-reduction reaction between the metal ions and the reducing agent is 100 μA/cm2 or less, the exchange-current density being determined by the mixed potential theory.
摘要翻译:一种通过在液相反应体系中还原剂的还原剂将金属离子还原析出而制造金属粉末的方法,其中金属通过在金属粉末颗粒的交换电流密度 金属离子和还原剂之间的氧化还原反应为100μA/ cm 2以下,交换电流密度由混合电位理论决定。
摘要:
A method of producing metal powder by reducing ions of a metal for precipitation by performance of a reducing agent in a liquid-phase reaction system, wherein the metal is precipitated as metal powder particles by being reduced under conditions in which the exchange-current density of an oxidation-reduction reaction between the metal ions and the reducing agent is 100 μA/cm2 or less, the exchange-current density being determined by the mixed potential theory.
摘要翻译:一种通过在液相反应体系中还原剂的还原剂将金属离子还原析出而制造金属粉末的方法,其中金属通过在金属粉末颗粒的交换电流密度 金属离子和还原剂之间的氧化还原反应为100μA/ cm 2以下,交换电流密度由混合势理论决定。
摘要:
A flexible printed wiring board includes a substrate, conductor wirings, a coverlay film, a jumper wiring, and through holes. The conductor wirings are disposed on a first surface of the substrate. The coverlay film covers at least part of the conductor wirings. The jumper wiring electrically connects the conductor wirings to each other. The through holes are formed in the substrate and respectively open to the surfaces of the conductor wirings. The jumper wiring is composed of a hardened material of a conductive paste and is formed so that a second surface of the substrate is continuous with respective surfaces of the conductor wirings to which the through holes open.
摘要:
A flexible printed wiring board includes a substrate, conductor wirings, a coverlay film, a jumper wiring, and through holes. The conductor wirings are disposed on a first surface of the substrate. The coverlay film covers at least part of the conductor wirings. The jumper wiring electrically connects the conductor wirings to each other. The through holes are formed in the substrate and respectively open to the surfaces of the conductor wirings. The jumper wiring is composed of a hardened material of a conductive paste and is formed so that a second surface of the substrate is continuous with respective surfaces of the conductor wirings which the through holes open.
摘要:
A plurality of optical sensors (4) are arranged in a surface region of a semiconductor substrate (6) in a matrix pattern, and electric charge generated by the optical sensors (4) is transferred by first and second transfer electrodes (12 and 14) embedded under the optical sensors (4). The semiconductor substrate (6) is constructed by laminating a support substrate (16) composed of silicon, a buffer layer (18), and a thin silicon layer (20) composed of single-crystal silicon. p− regions (26) (overflow barrier) and n-type regions (28) which function as transfer paths are formed under the optical sensors (4). The first and the second transfer electrodes (12 and 14) are disposed between the buffer layer (18) and the n-type regions (28), and an insulating film (30) is interposed between the n-type regions (28) and the first and the second transfer electrodes (12 and 14). In this structure, the light-receiving area is large since the transfer electrodes are not disposed in the front region. Accordingly, the sensitivity can be ensured even when the size of the optical sensors (4) is reduced for increasing the number of pixels.
摘要:
A plurality of optical sensors (4) are arranged in a surface region of a semiconductor substrate (6) in a matrix pattern, and electric charge generated by the optical sensors (4) is transferred by first and second transfer electrodes (12 and 14) embedded under the optical sensors (4). The semiconductor substrate (6) is constructed by laminating a support substrate (16) composed of silicon, a buffer layer (18), and a thin silicon layer (20) composed of single-crystal silicon. p− regions (26) (overflow barrier) and n-type regions (28) which function as transfer paths are formed under the optical sensors (4). The first and the second transfer electrodes (12 and 14) are disposed between the buffer layer (18) and the n-type regions (28), and an insulating film (30) is interposed between the n-type regions (28) and the first and the second transfer electrodes (12 and 14). In this structure, the light-receiving area is large since the transfer electrodes are not disposed in the front region. Accordingly, the sensitivity can be ensured even when the size of the optical sensors (4) is reduced for increasing the number of pixels.
摘要:
A conductive silver paste according to the present invention comprises epoxy resin, flake-shaped silver powders having an average particle diameter of 0.5 to 50 μm, and spherical silver powders, each having its surface coated with organic matter, having an average particle diameter of not more than 1 μm, and a conductive film according to the present invention is formed by printing or applying the conductive silver paste on a surface of a base material, followed by drying, and then thermosetting the epoxy resin.
摘要:
A proximity effect correction method used in a delineation method employing an electron ray beam, in which the electron ray beam is illuminated on an electron ray sensitive resist material for delineating a pattern on the resist material. The method consists in dividing the pattern for delineation into pre-set unitary domains, and correcting the exposure light volume of an electron ray beam illuminated on each unitary domain in consideration of the accumulated energy ascribable to backward scattering of electrons. The proximity effect correction method includes the steps of bit-map-developing each unitary domain and calculating a pattern areal density in each unitary domain, averaging the pattern areal density in each unitary domain for calculating the averaged pattern area density, calculating the gradient vector of the averaged pattern areal density, and extracting a unitary domain where the magnitude of the calculated gradient vector is more than a pre-set value for identifying the unitary domain exhibiting a high correction error in the proximity effect correction.
摘要:
A plurality of optical sensors (4) are arranged in a surface region of a semiconductor substrate (6) in a matrix pattern, and electric charge generated by the optical sensors (4) is transferred by first and second transfer electrodes (12 and 14) embedded under the optical sensors (4). The semiconductor substrate (6) is constructed by laminating a support substrate (16) composed of silicon, a buffer layer (18), and a thin silicon layer (20) composed of single-crystal silicon. p− regions (26) (overflow barrier) and n-type regions (28) which function as transfer paths are formed under the optical sensors (4). The first and the second transfer electrodes (12 and 14) are disposed between the buffer layer (18) and the n-type regions (28), and an insulating film (30) is interposed between the n-type regions (28) and the first and the second transfer electrodes (12 and 14). In this structure, the light-receiving area is large since the transfer electrodes are not disposed in the front region. Accordingly, the sensitivity can be ensured even when the size of the optical sensors (4) is reduced for increasing the number of pixels.