摘要:
A capacitive pressure sensor includes lower and upper wafers, a stationary electrode, first and second pads, a movable electrode, and a plurality of extraction electrodes. The lower wafer has a first capacitor forming portion and a first pad forming portion communicating with it. The upper wafer has a second capacitor forming portion, constituting a capacitor chamber together with the first capacitor forming portion, and a second pad forming portion communicating with it. The stationary electrode is formed on a bottom surface of the first capacitor forming portion. The first pad is formed on a bottom surface of the first pad forming portion and connected to the stationary electrode through a first interconnection. The movable electrode is formed on a bottom surface of the second capacitor forming portion to oppose the stationary electrode. The second pad is formed in the second pad forming portion and connected to the movable electrode through a second interconnection. The extraction electrodes are connected to the first and second pads and extracted outside through holes in the lower wafer. The lower and upper wafers are bonded to each other such that their pad forming portions are covered with their bonding surfaces.
摘要:
A capacitive pressure sensor is provided which is capable of highly accurately and reliably measuring pressure over a wide range from an extremely low level to a high level without being affected by environmental changes. The capacitive pressure sensor is constructed of a first diaphragm; a second diaphragm arranged in parallel with the first diagram; a diaphragm support arranged between the first and second diaphragms for supporting the first and second diaphragms along the periphery thereof to define a space isolated from the outside; a plurality of pillars having respective ends fixed on the opposing surfaces of the first and second diaphragms for securely supporting the first and second diaphragms; a movable electrode formed on one of the opposing surfaces of the first and second diaphragms; and a fixed electrode formed in the space without contacting with the plurality of pillars and securely supported by the diaphragm support. Pressure values measured by the capacitive pressure sensor are substantially free from errors due to fluctuations in atmospheric pressure and errors caused by aging changes of residual stress on the bonding interface.
摘要:
A capacitive pressure sensor includes first and second substrates, a groove, and first and second electrodes. The first substrate consists of an electrical insulating material. The second substrate consists of the same material as that for the first substrate and has a peripheral portion directly bonded to the first substrate. The groove is formed in a central portion of the surface of one of the first and second substrates. The first and second substrates oppose each other through the groove. The first electrode is coupled to a surface, of the first substrate, which opposes the second substrate so as to be movable together with the first substrate. The second electrode is arranged on a surface, of the second substrate, which opposes the first substrate so as to be parallel to the first electrode. The first and second substrate may consist of quartz glass or sapphire. The first and second substrates are bonded to each other at a temperature lower than the melting point of the substrate material without forming any bonding layer.
摘要:
Pads 24 and 25 to be bonded to connection members are formed at positions where the pads face electrode extraction holes 4a to 4c. A bonding agent 12 low in wettability for the surfaces of electrodes 1 and 3 is used. The bonding agent 12 and high-wettability material form the surfaces of the pads 24 and 25. This can firmly bond the connection members to the electrodes 1 and 3, and can prevent the electrodes 1 and 3 from short-circuiting.
摘要:
A patterning method comprising the steps of:the first step of disposing at least one silane compound selected from the group consisting of a silicon hydride compound and a silicon halide compound in the space between a substrate and a patterned mold; andthe second step of subjecting the silane compound to at least one treatment selected from a heat treatment and an ultraviolet exposure treatment.A pattern composed of silicon can be formed by carrying out the second step in an inert atmosphere or a reducing atmosphere and a pattern composed of silicon oxide can be formed by carrying out at least part of the second step in an oxygen-containing atmosphere.
摘要:
Provided is a method for manufacturing a silicon carbide semiconductor device which is capable of obtaining the silicon carbide semiconductor device having a high forward current and a low reverse leakage current by a simple method. The method for manufacturing a silicon carbide semiconductor device includes the steps of: forming a film made of a first electrode material on one surface of a silicon carbide substrate, and forming an ohmic electrode by performing heat treatment at a temperature range of 930 to 950° C.; and forming a film made of a second electrode material on the other surface of the silicon carbide substrate, and forming a Schottky electrode by performing heat treatment.
摘要:
According to one embodiment, a medical image display apparatus includes a storage unit storing data of a three-dimensional image, a slice image generating unit generating three slice images associated with three slices from the three-dimensional image, a display unit displaying the three slice images respectively in three display areas, an ROI marker generating unit generating three ROI markers to be respectively superimposed on the displayed three slice images, the three ROI markers corresponding to a single ROI, an operation unit performing operation of changing relative positions between the three slice images and the three ROI markers, and a display control unit controlling move the three slice images in the three display areas in accordance with the operation of changing the relative positions and fix the three ROI markers at center positions of the three display areas.
摘要:
By reacting a β-hydroxy-α-amino acid with sulfuryl fluoride (SO2F2) in the presence of an organic base, it is possible to produce an α-fluoro-β-amino acid of the formula [2]. By using a C8-12 tertiary amine having two or more alkyl groups of C3 or higher, and especially diisopropylethylamine, as the organic base, by-production of quantery ammonium salts is effectively suppressed. By applying the production process of the present invention, it is possible to very easily produce (2R)-3-(dibenzylamino)-2-fluoropropionic acid methyl ester, which is extremely important as a pharmaceutical intermediate, with high positional selectivity even on an industrial scale.
摘要:
A porous electrolytic solution reservoir which is capable of being impregnated with an electrolytic solution is provided in an exterior case so as to make contact with a separator. The average diameter of the pores in the electrolytic solution reservoir is greater than the average diameter of pores in the separator. The electrolytic solution reservoir is impregnated with a predetermined amount of electrolytic solution, so that the occupation ratio of electrolytic solution within the pores in the separator becomes 50% or more when fully charged, and the occupation ratio of electrolytic solution within the pores in the electrolytic solution reservoir becomes 100% or less when fully discharged.
摘要:
Frequency characteristics of an optical low-pass filter (2) are set in such a way that a first false color passing rate indicative of the rate of frequency components passing through a frequency component region not lower than the Nyquist frequency fa for the lowest sampling frequency fs among the sampling frequencies in the longitudinal, the lateral, and the oblique directions for each color in an image sensor (5), i.e. a frequency component region lower than one half of the Nyquist frequency fs of the sampling frequency fs of the image sensor (5), is not higher than a specified value. An output image signal is created from a pixel signal created by the image sensor (5) so that N pixel signals (N is real number of 2 or above) created by the image sensor (5) correspond to one output image signal.