摘要:
Provided is a gain amplifier having a switched-capacitor structure capable of minimizing settling time, in which an input capacitor is connected to an input terminal during a first clock sampling an input signal, and thus an output terminal of the amplifier is reset in advance to an estimated output voltage value rather than 0 by the input capacitor. Accordingly, the slight move of the output terminal of the amplifier is sufficient to settle to a desired value in an amplification mode, so that slewing time can be reduced, and as a result, overall settling time and power consumption can be minimized.
摘要:
Provided is a switched-capacitor variable gain amplifier having high voltage gain linearity. According to the above amplifier, a sampling capacitor is shared and used at a sampling phase and an amplification phase, and thus a voltage gain error caused by capacitor mismatch can be reduced. Also, using a unit capacitor array enables circuit design and layout to be simplified. Further, in the amplifier, a voltage gain can be easily controlled to be more or less than 1, as necessary, and power consumption and kT/C noise can be reduced by a feedback factor that is relatively large, so that gain amplification performance can be improved.
摘要:
Provided are a pipeline Analog-to-Digital Converter (ADC) without a front-end Sample-and-Hold Amplifier (SHA) and a method of controlling the same. The method includes the steps of: simultaneously sampling, at an ADC and a residual signal generator included in a first stage, an analog input signal and respectively generating a first sampling value and a second sampling value; holding, at the residual signal generator, the second sampling value, and simultaneously amplifying and converting, at the ADC, the first sampling value into a corresponding digital code; and generating, at the residual signal generator, a residual signal using the digital code. The pipeline ADC and method of controlling the same minimize sampling mismatch caused by removing a front-end SHA, thereby ensuring stable performance without a front-end SHA. Since a front-end SHA is not used, it is possible to reduce chip size and power consumption, and improve the performance of the ADC.
摘要:
Provided is a gain amplifier having a switched-capacitor structure capable of minimizing settling time, in which an input capacitor is connected to an input terminal during a first clock sampling an input signal, and thus an output terminal of the amplifier is reset in advance to an estimated output voltage value rather than 0 by the input capacitor. Accordingly, the slight move of the output terminal of the amplifier is sufficient to settle to a desired value in an amplification mode, so that slewing time can be reduced, and as a result, overall settling time and power consumption can be minimized.
摘要:
Provided is an analog digital converting device which consumes a low power and guarantees fast operation characteristic. The analog digital converting device includes a sub-ADC and a successive approximation ADC. The sub-ADC converts an external analog signal into a first digital signal by using first and second reference voltages. The successive approximation ADC comprises a plurality of bit streams, and converts the external analog signal into a second digital signal according to a successive approximation operation using the first and second reference voltages. The successive approximation ADC receives the first digital signal, and converts the second digital signal in a state where one of the first and second reference voltages has been applied to the bit streams based on the first digital signal.
摘要:
Provided is a pipeline analog-to-digital converter (ADC) without a front-end sample-and-hold amplifier (SHA). To minimize a sampling error occurring between a flash ADC and a multiplying digital-to-analog converter (MDAC) of a first sub-ranging ADC due to removal of a front-end SHA, a delay time of a preamplifier included in the flash ADC is calculated, and the flash ADC samples an analog input signal later by the delay time than the MDAC. Accordingly, the pipeline ADC can minimize a sampling error without using a front-end SHA, and its chip area and power consumption can be reduced.
摘要:
Provided is an analog digital converting device which consumes a low power and guarantees fast operation characteristic. The analog digital converting device includes a sub-ADC and a successive approximation ADC. The sub-ADC converts an external analog signal into a first digital signal by using first and second reference voltages. The successive approximation ADC comprises a plurality of bit streams, and converts the external analog signal into a second digital signal according to a successive approximation operation using the first and second reference voltages. The successive approximation ADC receives the first digital signal, and converts the second digital signal in a state where one of the first and second reference voltages has been applied to the bit streams based on the first digital signal.
摘要:
A reference voltage supply circuit is provided. The reference voltage supply circuit includes a first amplifier for amplifying a first input voltage and a fed back first reference voltage, a second amplifier for amplifying a second input voltage and a fed back second reference voltage, a reference voltage generator for generating the first reference voltage and the second reference voltage according to output signals of the first and second amplifiers and feeding the first and second reference voltages back to the first and second amplifiers, and a glitch remover turned on/off according to an input pulse signal to conduct or cut off current flowing between a power supply terminal and the ground.
摘要:
Provided is an offset-voltage calibration circuit. The circuit includes a comparator configured to receive at least two comparison voltages and output a result of a comparison between the comparison voltages, an up/down counter (UDC) configured to output an up-counting or down-counting output signal in response to an output signal of the comparator, and a current digital-to-analog converter (DAC) configured to control the amount of current supplied from a node to which the comparison voltage is applied, in response to the output signal of the UDC and control the magnitude of the comparison voltage.
摘要:
A digital-to-analog converter (DAC) is provided. The DAC includes a positive converter, a negative converter, and a comparator for receiving outputs of the positive converter and the negative converter, comparing the outputs with a reference voltage, and generating an output voltage. Each of the positive converter and the negative converter includes an upper-bit converter including a plurality of bit capacitors corresponding to respective upper bits, a lower-bit converter including a plurality of bit capacitors corresponding to respective lower bits, and a coupling capacitor for connecting the upper-bit converter with the lower-bit converter in series. Each of the positive converter and the negative converter receives a bias voltage to have a uniform offset when converting the respective bits. Accordingly, it is possible to obtain a high resolution using a small area. Also, the number of capacitors can be reduced, and the capacitance of a unit capacitor can be maximized. Consequently, it is possible to minimize heat noise and device mismatching.