摘要:
In a device, a III-nitride light emitting layer is disposed between an n-type region and a p-type region. A first spacer layer, which is disposed between the n-type region and the light emitting layer, is doped to a dopant concentration between 6×1018 cm3 and 5×1019 cm−3. A second spacer layer, which is disposed between the p-type region and the light emitting layer, is not intentionally doped or doped to a dopant concentration less than 6×1018 cm−3.
摘要:
A III-nitride light emitting layer is disposed between an n-type region and a p-type region. The light emitting layer is a doped thick layer. In some embodiments, the light emitting layer is sandwiched between two doped spacer layers.
摘要:
A semiconductor light emitting device includes a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer may be a wurtzite III-nitride layer with a thickness of at least 50 angstroms. The light emitting layer may have a polarization reversed from a conventional wurtzite III-nitride layer, such that across an interface between the light emitting layer and the p-type region, the wurtzite c-axis points toward the light emitting layer. Such an orientation of the c-axis may create a negative sheet charge at an interface within or at the edge of the p-type region, providing a barrier to charge carriers in the light emitting layer.
摘要:
A III-nitride light emitting layer in a semiconductor light emitting device has a graded composition. The composition of the light emitting layer may be graded such that the change in the composition of a first element is at least 0.2% per angstrom of light emitting layer. Grading in the light emitting layer may reduce problems associated with polarization fields in the light emitting layer. The light emitting layer may be, for example InxGa1-xN, AlxGa1-xN, or InxAlyGa1-x-yN.
摘要翻译:半导体发光器件中的III族氮化物发光层具有渐变组成。 发光层的组成可以分级,使得第一元素的组成的变化为每发光层的至少0.2%。 在发光层中的分级可以减少与发光层中的极化场相关的问题。 发光层可以是例如在N 1 Ga 1-x N,Al x Ga 1-x N 2 > N,或在<! - SIPO - >中。
摘要:
A III-nitride device includes a first n-type layer, a first p-type layer, and an active region separating the first p-type layer and the first n-type layer. The device may include a second n-type layer and a tunnel junction separating the first and second n-type layers. First and second contacts are electrically connected to the first and second n-type layers. The first and second contacts are formed from the same material, a material with a reflectivity to light emitted by the active region greater than 75%. The device may include a textured layer disposed between the second n-type layer and the second contact or formed on a surface of a growth substrate opposite the device layers.
摘要:
To increase the lattice constant of AlInGaP LED layers to greater than the lattice constant of GaAs for reduced temperature sensitivity, an engineered growth layer is formed over a substrate, where the growth layer has a lattice constant equal to or approximately equal to that of the desired AlInGaP layers. In one embodiment, a graded InGaAs or InGaP layer is grown over a GaAs substrate. The amount of indium is increased during growth of the layer such that the final lattice constant is equal to that of the desired AlInGaP active layer. In another embodiment, a very thin InGaP, InGaAs, or AlInGaP layer is grown on a GaAs substrate, where the InGaP, InGaAs, or AlInGaP layer is strained (compressed). The InGaP, InGaAs, or AlInGaP thin layer is then delaminated from the GaAs and relaxed, causing the lattice constant of the thin layer to increase to the lattice constant of the desired overlying AlInGaP LED layers. The LED layers are then grown over the thin InGaP, InGaAs, or AlInGaP layer.
摘要:
A semiconductor structure includes an n-type region, a p-type region, and a III-nitride light emitting layer disposed between the n-type region and the p-type region. The III-nitride light emitting layer has a lattice constant greater than 3.19 Å. Such a semiconductor structure may be grown on a substrate including a host and a seed layer bonded to the host. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
摘要:
A photonic crystal is grown within a semiconductor structure, such as a III-nitride structure, which includes a light emitting region disposed between an n-type region and a p-type region. The photonic crystal may be multiple regions of semiconductor material separated by a material having a different refractive index than the semiconductor material. For example, the photonic crystal may be posts of semiconductor material grown in the structure and separated by air gaps or regions of masking material. Growing the photonic crystal, rather than etching a photonic crystal into an already-grown semiconductor layer, avoids damage caused by etching which may reduce efficiency, and provides uninterrupted, planar surfaces on which to form electric contacts.
摘要:
To increase the lattice constant of AlInGaP LED layers to greater than the lattice constant of GaAs for reduced temperature sensitivity, an engineered growth layer is formed over a substrate, where the growth layer has a lattice constant equal to or approximately equal to that of the desired AlInGaP layers. In one embodiment, a graded InGaAs or InGaP layer is grown over a GaAs substrate. The amount of indium is increased during growth of the layer such that the final lattice constant is equal to that of the desired AlInGaP active layer. In another embodiment, a very thin InGaP, InGaAs, or AlInGaP layer is grown on a GaAs substrate, where the InGaP, InGaAs, or AlInGaP layer is strained (compressed). The InGaP, InGaAs, or AlInGaP thin layer is then delaminated from the GaAs and relaxed, causing the lattice constant of the thin layer to increase to the lattice constant of the desired overlying AlInGaP LED layers. The LED layers are then grown over the thin InGaP, InGaAs, or AlInGaP layer.
摘要:
A semiconductor light emitting device includes an in-plane active region that emits linearly-polarized light. An in-plane active region may include, for example, a {11{overscore (2)}0} or {10{overscore (1)}0} InGaN light emitting layer. In some embodiments, a polarizer oriented to pass light of a polarization of a majority of light emitted by the active region serves as a contact. In some embodiments, two active regions emitting the same or different colored light are separated by a polarizer oriented to pass light of a polarization of a majority of light emitted by the bottom active region, and to reflect light of a polarization of a majority of light emitted by the top active region. In some embodiments, a polarizer reflects light scattered by a wavelength converting layer.