III-V light emitting device
    1.
    发明申请
    III-V light emitting device 审中-公开
    III-V发光装置

    公开(公告)号:US20070069225A1

    公开(公告)日:2007-03-29

    申请号:US11237215

    申请日:2005-09-27

    Abstract: A semiconductor structure includes an n-type region, a p-type region, and a III-nitride light emitting layer disposed between the n-type region and the p-type region. The III-nitride light emitting layer has a lattice constant greater than 3.19 Å. Such a semiconductor structure may be grown on a substrate including a host and a seed layer bonded to the host. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.

    Abstract translation: 半导体结构包括设置在n型区域和p型区域之间的n型区域,p型区域和III族氮化物发光层。 III族氮化物发光层的晶格常数大于3.19埃。 这样的半导体结构可以在包含与主体结合的主体和种子层的基板上生长。 在一些实施方案中,结合层将主体结合到种子层。 种子层可以比用于缓和半导体结构中的应变的临界厚度薄,使得半导体结构中的应变由种子层中形成的位错或通过在种子层和结合层之间滑动而消除, 两层。 在一些实施例中,可以通过蚀刻掉粘合层来将主体与半导体结构和种子层分离。

    Substrate for growing a III-V light emitting device
    2.
    发明申请
    Substrate for growing a III-V light emitting device 有权
    用于生长III-V发光器件的衬底

    公开(公告)号:US20070072324A1

    公开(公告)日:2007-03-29

    申请号:US11237164

    申请日:2005-09-27

    Abstract: A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.

    Abstract translation: 提供了包括与主体结合的主体和种子层的基板,然后在种子层上生长包括设置在n型区域和p型区域之间的发光层的半导体结构。 在一些实施方案中,结合层将主体结合到种子层。 种子层可以比用于缓和半导体结构中的应变的临界厚度薄,使得半导体结构中的应变由种子层中形成的位错或通过在种子层和结合层之间滑动而消除, 两层。 在一些实施例中,可以通过蚀刻掉粘合层来将主体与半导体结构和种子层分离。

    Package-Integrated Thin Film LED
    4.
    发明申请
    Package-Integrated Thin Film LED 有权
    封装集成薄膜LED

    公开(公告)号:US20060240585A1

    公开(公告)日:2006-10-26

    申请号:US11421350

    申请日:2006-05-31

    Abstract: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features. There is very little absorption of light by the thinned epitaxial layer, there is high thermal conductivity to the package because the LED layers are directly bonded to the package substrate without any support substrate therebetween, and there is little electrical resistance between the package and the LED layers so efficiency (light output vs. power input) is high. The light extraction features of the LED layer further improves efficiency.

    Abstract translation: 在衬底上生长LED外延层(n型,p型和有源层)。 对于每个管芯,n和p层电连接到延伸超过LED管芯边界的封装衬底,使得LED层位于封装衬底和生长衬底之间。 封装衬底提供电触头和导体,导致可焊接的封装连接。 然后除去生长底物。 因为精细的LED层在附着于生长衬底的同时与封装衬底结合,所以不需要用于LED层的中间支撑衬底。 然后将与去除的生长衬底相邻的较厚的LED外延层变薄,并将其顶表面加工成掺入光提取特征。 通过减薄的外延层对光的吸收非常小,因为LED层直接接合到封装基板上而没有任何支撑基板,因此封装和LED之间的电阻很小,因此封装的导热性很高 层效率(光输出与功率输入)高。 LED层的光提取特性进一步提高了效率。

    Package-integrated thin film LED
    5.
    发明申请

    公开(公告)号:US20060091409A1

    公开(公告)日:2006-05-04

    申请号:US10977294

    申请日:2004-10-28

    Abstract: LED epitaxial layers (n-type, p-type, and active layers) are grown on a substrate. For each die, the n and p layers are electrically bonded to a package substrate that extends beyond the boundaries of the LED die such that the LED layers are between the package substrate and the growth substrate. The package substrate provides electrical contacts and conductors leading to solderable package connections. The growth substrate is then removed. Because the delicate LED layers were bonded to the package substrate while attached to the growth substrate, no intermediate support substrate for the LED layers is needed. The relatively thick LED epitaxial layer that was adjacent the removed growth substrate is then thinned and its top surface processed to incorporate light extraction features. There is very little absorption of light by the thinned epitaxial layer, there is high thermal conductivity to the package because the LED layers are directly bonded to the package substrate without any support substrate therebetween, and there is little electrical resistance between the package and the LED layers so efficiency (light output vs. power input) is high. The light extraction features of the LED layer further improves efficiency.

    Photonic crystal light emitting device
    6.
    发明申请
    Photonic crystal light emitting device 有权
    光子晶体发光装置

    公开(公告)号:US20060163606A1

    公开(公告)日:2006-07-27

    申请号:US11373636

    申请日:2006-03-09

    Abstract: A photonic crystal structure is formed in an n-type region of a III-nitride semiconductor structure including an active region sandwiched between an n-type region and a p-type region. A reflector is formed on a surface of the p-type region opposite the active region. In some embodiments, the growth substrate on which the n-type region, active region, and p-type region are grown is removed, in order to facilitate forming the photonic crystal in an an-type region of the device, and to facilitate forming the reflector on a surface of the p-type region underlying the photonic crystal. The photonic crystal and reflector form a resonant cavity, which may allow control of light emitted by the active region.

    Abstract translation: 在包括夹在n型区域和p型区域之间的有源区域的III族氮化物半导体结构的n型区域中形成光子晶体结构。 在与有源区相对的p型区域的表面上形成反射体。 在一些实施例中,除去其上生长n型区域,活性区域和p型区域的生长衬底,以便于在器件的类型区域中形成光子晶体,并且有利于形成 在光子晶体下面的p型区域的表面上的反射器。 光子晶体和反射器形成谐振腔,其可以允许控制由有源区发射的光。

    Photonic crystal light emitting device
    7.
    发明申请
    Photonic crystal light emitting device 审中-公开
    光子晶体发光装置

    公开(公告)号:US20050205883A1

    公开(公告)日:2005-09-22

    申请号:US10804810

    申请日:2004-03-19

    Abstract: A photonic crystal structure is formed in an n-type region of a III-nitride semiconductor structure including an active region sandwiched between an n-type region and a p-type region. A reflector is formed on a surface of the p-type region opposite the active region. In some embodiments, the growth substrate on which the n-type region, active region, and p-type region are grown is removed, in order to facilitate forming the photonic crystal in an an-type region of the device, and to facilitate forming the reflector on a surface of the p-type region underlying the photonic crystal. The photonic crystal and reflector form a resonant cavity, which may allow control of light emitted by the active region.

    Abstract translation: 在包括夹在n型区域和p型区域之间的有源区域的III族氮化物半导体结构的n型区域中形成光子晶体结构。 在与有源区相对的p型区域的表面上形成反射体。 在一些实施例中,除去其上生长n型区域,活性区域和p型区域的生长衬底,以便于在器件的类型区域中形成光子晶体,并且有利于形成 在光子晶体下面的p型区域的表面上的反射器。 光子晶体和反射器形成谐振腔,其可以允许控制由有源区发射的光。

    Resonant cavity III-nitride light emitting devices fabricated by growth substrate removal
    9.
    发明申请
    Resonant cavity III-nitride light emitting devices fabricated by growth substrate removal 审中-公开
    通过生长衬底去除制造的谐振腔III族氮化物发光器件

    公开(公告)号:US20060014310A1

    公开(公告)日:2006-01-19

    申请号:US11227416

    申请日:2005-09-14

    CPC classification number: H01L33/465 H01L33/007 H01L33/0079 H01L33/22

    Abstract: A semiconductor light emitting device includes an n-type region, a p-type region, and light emitting region disposed between the n- and p-type regions. The n-type, p-type, and light emitting regions form a cavity having a top surface and a bottom surface. Both the top surface and the bottom surface of the cavity may have a rough surface. For example, the surface may have a plurality of peaks separated by a plurality of valleys. In some embodiments, the thickness of the cavity is kept constant by incorporating an etch-stop layer into the device, then thinning the layers of the device by a process that terminates on the etch-stop layer.

    Abstract translation: 半导体发光器件包括n型区域,p型区域和设置在n型区域和p型区域之间的发光区域。 n型,p型和发光区形成具有顶表面和底表面的空腔。 空腔的顶表面和底表面都可以具有粗糙的表面。 例如,表面可以具有由多个谷分隔的多个峰。 在一些实施例中,通过将蚀刻停止层并入该器件中,使空腔的厚度保持恒定,然后通过终止于蚀刻停止层上的工艺使器件的层变薄。

Patent Agency Ranking