摘要:
A method for forming a low dielectric constant film includes the steps of: introducing reaction gas comprising an organo Si gas and an inert gas into a reactor of a capacitively-coupled CVD apparatus; adjusting a size of fine particles being generated in the vapor phase to a nanometer order size as a function of a plasma discharge period inside the reactor; and depositing fine particles generated on a substrate being placed between upper and lower electrodes inside the reactor while controlling a temperature gradient between the substrate and the upper electrode at about 100° C./cm or less.
摘要:
A method for forming a low dielectric constant film includes the steps of: introducing reaction gas comprising an organo Si gas and an inert gas into a reactor of a capacitively-coupled CVD apparatus; adjusting a size of fine particles being generated in the vapor phase to a nanometer order size as a function of a plasma discharge period inside the reactor; and depositing fine particles generated on a substrate being placed inside the reactor.
摘要:
A silicon-containing insulation film is formed on a substrate by plasma reaction using a reaction gas including (i) a source gas comprising a silicon-containing hydrocarbon compound containing multiple cross-linkable groups, (ii) a cross-linking gas, and (iii) an inert gas, into a reaction chamber where a substrate is placed. The insulation film is then exposed to electron beam radiation, thereby increasing mechanical strength of the film without substantial alternation of its dielectric constant.
摘要:
A silicon-containing insulation film is formed on a substrate by plasma reaction using a reaction gas including (i) a source gas comprising a silicon-containing hydrocarbon compound containing multiple cross-linkable groups, (ii) a cross-linking gas, and (iii) an inert gas, into a reaction chamber where a substrate is placed. The insulation film is then exposed to electron beam radiation, thereby increasing mechanical strength of the film without substantial alternation of its dielectric constant.
摘要:
A method for forming an insulation film having filling property on a semiconductor substrate by plasma reaction includes: vaporizing a silicon-containing hydrocarbon having a Si—O bond compound to provide a source gas; introducing the source gas and a carrier gas without an oxidizing gas into a reaction space for plasma CVD processing; and forming an insulation film constituted by Si, O, H, and optionally C or N on a substrate by plasma reaction using a combination of low-frequency RF power and high-frequency RF power in the reaction space. The plasma reaction is activated while controlling the flow of the reaction gas to lengthen a residence time, Rt, of the reaction gas in the reaction space.
摘要:
A method for forming an insulation film having filling property on a semiconductor substrate by plasma reaction includes: vaporizing a silicon-containing hydrocarbon having a Si—O bond compound to provide a source gas; introducing the source gas and a carrier gas without an oxidizing gas into a reaction space for plasma CVD processing; and forming an insulation film constituted by Si, O, H, and optionally C or N on a substrate by plasma reaction using a combination of low-frequency RF power and high-frequency RF power in the reaction space. The plasma reaction is activated while controlling the flow of the reaction gas to lengthen a residence time, Rt, of the reaction gas in the reaction space.
摘要:
An insulation film is formed on a semiconductor substrate by a method including the steps of: (i) introducing a source gas comprising a compound composed of at least Si, C, and H into a chamber; (ii) introducing in pulses an oxidizing gas into the chamber, wherein the source gas and the oxidizing gas form a reaction gas; and (iii) forming an insulation film on a semiconductor substrate by plasma treatment of the reaction gas. The plasma treatment may be plasma CVD processing.
摘要:
A method of forming a dielectric film, includes: introducing a siloxane gas essentially constituted by Si, O, C, and H and a silazane gas essentially constituted by Si, N, H, and optionally C into a reaction chamber where a substrate is placed; depositing a siloxane-based film including Si—N bonds on the substrate by plasma reaction; and annealing the siloxane-based film on the substrate in an annealing chamber to remove Si—N bonds from the film.
摘要:
A method of forming a dielectric film includes: introducing a source gas essentially constituted by Si, N, H, and optionally C and having at least one bond selected from Si—N, Si—Si, and Si—H into a reaction chamber where a substrate is placed; depositing a silazane-based film essentially constituted by Si, N, H, and optionally C on the substrate by plasma reaction at −50° C. to 50° C., wherein the film is free of exposure of a solvent constituted essentially by C, H, and optionally O; and heat-treating the silazane-based film on the substrate in a heat-treating chamber while introducing an oxygen-supplying source into the heat-treating chamber to release C from the film and increase Si—O bonds in the film.
摘要:
A method of forming a film having a low dielectric constant, comprises the steps of: placing a substrate between an upper electrode and a lower electrode inside a reaction chamber, introducing a silicon-containing hydrocarbon compound source gas, an additive gas, and an inert gas into a space between the upper and lower electrodes by controlling a gas flow ratio, generating a plasma by applying RF power to the space between the upper and lower electrodes in a state in which an interval between the upper electrode and the substrate is narrower in the vicinity of a center of the substrate than that in the vicinity of its periphery, and forming a film having a low dielectric constant on the substrate at a deposition rate of less than approx. 790 nm/min by controlling a flow rate of the process gas.