摘要:
In a method of scanning a charged particle beam which can position the scan position to a proper location inside a deflectable range of the scan position of charged particle beam, the scan position of charged particle beam is deflected to a plurality of target objects inside a scan position deflectable region and on the basis of a shift of a target object at a scan location after deflection, the deflection amount at the scan location is corrected.
摘要:
In a method of scanning a charged particle beam which can position the scan position to a proper location inside a deflectable range of the scan position of charged particle beam, the scan position of charged particle beam is deflected to a plurality of target objects inside a scan position deflectable region and on the basis of a shift of a target object at a scan location after deflection, the deflection amount at the scan location is corrected.
摘要:
In a method of scanning a charged particle beam which can position the scan position to a proper location inside a deflectable range of the scan position of charged particle beam, the scan position of charged particle beam is deflected to a plurality of target objects inside a scan position deflectable region and on the basis of a shift of a target object at a scan location after deflection, the deflection amount at the scan location is corrected.
摘要:
In a method of scanning a charged particle beam which can position the scan position to a proper location inside a deflectable range of the scan position of charged particle beam, the scan position of charged particle beam is deflected to a plurality of target objects inside a scan position deflectable region and on the basis of a shift of a target object at a scan location after deflection, the deflection amount at the scan location is corrected.
摘要:
The present invention suppresses decreases in the volumes of the patterns which have been formed on the surfaces of semiconductor samples or of the like, or performs accurate length measurements, irrespective of such decreases. In an electrically charged particle ray apparatus by which the line widths and other length data of the patterns formed on samples are to be measured by scanning the surface of each sample with electrically charged particle rays and detecting the secondary electrons released from the sample, the scanning line interval of said electrically charged particle rays is set so as not to exceed the irradiation density dictated by the physical characteristics of the sample. Or measured length data is calculated from prestored approximation functions.
摘要:
The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices.To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges. Yet another method is disclosed for correcting the measurement length value or magnification based on fluctuations found by measuring the amount of electrostatic charge at the specified points under at least two charged particle optical conditions, and then using a charged particle beam to measure fluctuations in measurement dimensions occurring due to fluctuations in the electrostatic charge at the specified locations.
摘要:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the sample, based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
摘要:
A charged particle beam apparatus produces little reduction in resolution when the beam is inclined with respect to a sample. The trajectory of a primary beam 4 is deflected by a deflector or changed by a movable aperture such that the beam is incident on a plurality of lenses 6 and 7 off the axes thereof. A means is provided to control the off-axis trajectory of the beam such than an aberration produced by the objective lens 7 when the beam is inclined can be canceled by an aberration produced by the other lens 6.
摘要:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the sample based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
摘要:
An invention providing a scanning electron microscope composed of a monochromator capable of high resolution, monochromatizing the energy and reducing chromatic aberrations without significantly lowering the electrical current strength of the primary electron beam. A scanning electron microscope is installed with a pair of sectorial magnetic and electrical fields having opposite deflection directions to focus the electron beam and then limit the energy width by means of slits, and another pair of sectorial magnetic and electrical fields of the same shape is installed at a position forming a symmetrical mirror versus the surface containing the slits. This structure acts to cancel out energy dispersion at the object point and symmetrical mirror positions, and by spatially contracting the point-converged spot beam with a converging lens system, improves the image resolution of the scanning electron microscope.