摘要:
A new xylene isomerization process which is capable of converting ethylbenzene and non-aromatic exhaustively while selectively converting xylenes to thermal equilibrium in mixed EB/xylene feeds is proposed. The new process employs a two component catalyst system; each of the components contains a strong hydrogenation metal and a zeolite. The zeolite of each of the two components differs from the other in its selectivity for xylene isomerization and its capacity to deethylete ethylbenzene. That selectivity for xylene isomerization is described by xylene diffusion properties of the zeolite. In one embodiment of the invention, ZSM-5 of greater than 1 micron crystal size and an alpha value of greater than 100 in a first component and ZSM-5 of less than 1 micron crystal size and an alpha of less than 100 in a second catalyst component satisfy the diffusion properties which allow for the exhaustive conversion of ethyl benzene and non-aromatics and the selectivity for xylene isomerization of typical xylene isomerization feeds. In a preferred embodiment, the feed is cascaded over the first component and then the aforementioned second component.
摘要:
This invention relates to a process for isomerizing paraffins comprising the step of contacting a feed containing paraffins with a catalyst comprising a synthetic porous crystalline material, designated MCM-68, which exhibits a distinctive X-ray diffraction pattern and has a unique crystal structure which contains at least one channel system, in which each channel is defined by a 12-membered ring of tetrahedrally coordinated atoms, and at least two further, independent channel systems, in each of which each channel is defined by a 10-membered ring of tetrahedrally coordinated atoms, wherein the number of unique 10-membered ring channels is twice the number of 12-membered ring channels.
摘要:
The invention provides a process for alkylating an olefin with an isoparaffin comprising contacting an olefin-containing feed in the presence of a thermally stable composition comprising a non-swellable layered chalcogenide of an element having an atomic number of 4, 5, 12 to 15, 20 to 33, 38 to 51, 56 to 83 and greater than 90, inclusive, said layered metal chalcogenide comprising an interspathic polymeric chalcogenide of an element selected from Groups IB, IIB, IIIA, IIIB, IVA, IVB, VA, VB, VIA, VIIA, and VIIIA of the Periodic Table.
摘要:
There is provided a catalyst comprising a heteropoly acid, such as phosphotungstic acid, supported on a mesoporous crystalline material, such as M41S. A particular form of this M41S support is designated as MCM-41. There is also provided a method for preparing this catalyst by impregnating the heteropoly acid on the support. There is also provided a process for using this catalyst to catalyze acid catalyzed reactions, such as the isomerization of paraffins and the alkylation of aromatics.
摘要:
There is provided a hydrocarbon conversion process and a process for sorbing a sorbate wherein said conversion and sorption process each comprises the use of a porous material. A process for preparing this material involves adding an amphiphilic compound to the reaction mixture for preparing a crystalline oxide. The amphiphilic compound may be a quaternary ammonium cationic surfactant. These surfactants may be in the form of lamellar liquid crystals, and may function as templates for the formation of the present mesoporous oxide materials.
摘要:
There is provided a method for preparing a pillared layered material, designated MCM-36, with a characteristic X-ray diffraction pattern. Upon calcination of the swollen, non-pillared form of this material, the layers collapse and condense upon one another in a somewhat disordered fashion to form a non-swellable material. However, when the swollen layered material is intercalated with polymeric oxide pillars, the layer separation is maintained, even after calcination. A quaternary ammonium silicate, such as tetramethylammonium silicate, is used as a pillaring agent for treating the swollen material.
摘要:
There is provided a method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C. This material may have a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstrom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of a least about 13 Angstrom units. The reaction mixture for preparing this material contains silica-alumina hydrogel.
摘要:
There is provided a process for demetallizing hydrocarbon feedstocks, such as resids or shale oil. The process uses a catalyst comprising at least one hydrogenation metal, such as nickel and molybdenum, and an ultra-large pore oxide material. This ultra-large pore oxide material may have uniformly large pores, e.g., having a size of about 40 Angstroms in diameter.
摘要:
A method is described for purifying an ultra-large pore crystalline material by contact with an aqueous solution having a hydroxyl concentration sufficient to solubilize an impurity phase but not the crystalline material. The purified crystalline material is also described, as is a hydrocarbon conversion process over the purified crystalline material.
摘要:
This specification discloses a process for the alkylation of aromatics utilizing ZSM-23 catalyst. A particularly preferred embodiment utilizes ZSM-23 made from a forming mixture containing amorphous precipitated silica, as a silica source, including trace amounts of alumina and sodium chloride.