摘要:
A piece of pick and place tool or a chip bonding equipment, which has innovative designs enabling chip(s) on a tape to get picked up without touching its front surface, is invented. The designs use levitation technologies to receive and hold the chips detached from the tape from a face-down position. A streamline design is also invented to provide better productivity. The invented pick and place tool or chip bonder is particularly useful for applications which require using chips with zero tolerance of particle and/or contamination on the chip front surfaces.
摘要:
A magnetic memory cell comprises in-plane anisotropy tunneling magnetic junction (TMJ) and two fixed in-plane storage-stabilized layers, which splits on the both side of the data storage layer of the TMJ. The magnetizations of the said fixed in-plane storage-stabilized layers are all normal to that of the reference layer of TMJ but point to opposite direction. The existing of the storage-stabilized layers not only enhances the stability of the data storage, but also can reduce the critical current needed to flip the data storage layer via some specially added features.
摘要:
A new magnetic memory cell comprises a perpendicular-anisotropy tunneling magnetic junction (TMJ) and a fixed in-plane spin-polarizing layer, which is separated from the perpendicular-anisotropy data storage layer of tunneling magnetic junction by a non-magnetic layer. The non-magnetic layer can be made of metallic or dielectric materials.
摘要:
A high-precision alignment method with high throughput is proposed, which can be used for wafer-to-wafer, chip-to-wafer or chip-to-chip bonding. The scheme implements pairing patterned magnets predetermined designed and made using wafer level process on two components (wafer or chip). The magnetization in patterned magnet can be set at predetermined configuration before bonding starts. When, the two components are bought to close proximity after a coarse alignment, the magnetic force will bring the magnet pairs together and aligned the patterned magnet on one component with its mirrored or complimentary patterned magnets on the other component to minimize the overall the magnetic energy of the pairing magnet. A few patterned magnet structures and materials, with their unique merits are proposed as examples for magnet pair for the self-alignment purpose. This method enables solid contact at the bonding interface via patterned magnets under the magnetic force, which avoid the wafer drafting due to the formation of the liquid phases.
摘要:
A new class of the memory cell is proposed. There are two separated pulse data writing and sensing current paths. The in-plane pulse current is used to flip the magnetization direction of the perpendicular-anisotropy data storage layer sandwiched between a heavy metal writing current-carrying layer and a dielectric layer. The magnetization state within data storage layer is detected by the patterned perpendicular-anisotropy tunneling magnetoresistive (TMR) stack via the output potential of the stack. Two detailed memory cells are proposed: in one proposed cell, the data storage layer is independent from but kept close to the sensing TMR stack, whose magnetization orientation affects magnetization configuration within the free layer of the TMR stack, therefor ultimately affects the output potential of the stack; in the other proposed cell, the perpendicular-anisotropy data storage layer is the free layer of the sensing TMR stack, whose magnetization state will directly affect the output potential of the stack when sensing current passes through.
摘要:
A piece of pick and place tool or a chip bonding equipment, which has innovative designs enabling chip(s) on a tape to get picked up without touching its front surface, is invented. The designs use levitation technologies to receive and hold the chips detached from the tape from a face-down position. A streamline design is also invented to provide better productivity. The invented pick and place tool or chip bonder is particularly useful for applications which require using chips with zero tolerance of particle and/or contamination on the chip front surfaces.
摘要:
A new class of the memory cell is proposed. There are two separated pulse data writing and sensing current paths. The in-plane pulse current is used to flip the magnetization direction of the perpendicular-anisotropy data storage layer sandwiched between a heavy metal writing current-carrying layer and a dielectric layer. The magnetization state within data storage layer is detected by the patterned perpendicular-anisotropy tunneling magnetoresistive (TMR) stack via the output potential of the stack. Two detailed memory cells are proposed: in one proposed cell, the data storage layer is independent from but kept close to the sensing TMR stack, whose magnetization orientation affects magnetization configuration within the free layer of the TMR stack, therefor ultimately affects the output potential of the stack; in the other proposed cell, the perpendicular-anisotropy data storage layer is the free layer of the sensing TMR stack, whose magnetization state will directly affect the output potential of the stack when sensing current passes through.
摘要:
A high-precision alignment method with high throughput is proposed, which can be used for wafer-to-wafer, chip-to-wafer or chip-to-chip bonding. The scheme implements pairing patterned magnets predetermined designed and made using wafer level process on two components (wafer or chip). The magnetization in patterned magnet can be set at predetermined configuration before bonding starts. When, the two components are bought to close proximity after a coarse alignment, the magnetic force will bring the magnet pairs together and aligned the patterned magnet on one component with its mirrored or complimentary patterned magnets on the other component to minimize the overall the magnetic energy of the pairing magnet. A few patterned magnet structures and materials, with their unique merits are proposed as examples for magnet pair for the self-alignment purpose. This method enables solid contact at the bonding interface via patterned magnets under the magnetic force, which avoid the wafer drafting due to the formation of the liquid phases.
摘要:
Methods and apparatuses for implementing magnetic field to assist PECVD to locally or globally coat the internal surface of the work piece are presented. Several permanent magnet assembly designs have been presented to provide efficient and effective magnetic field inside the work piece, which acts partially as the working chamber. The magnet assembly generates magnetic flux inside the working chamber, which increases the efficiency of PECVD process, enable PECVD process under higher gas pressure and to improve the uniformity, deposition rate, better adhesion and reduce the process temperature.
摘要:
A method and system for fabricating a microelectric device are described. A write pole of an energy assisted magnetic recording head or a capacitor might be fabricated. The method includes depositing a resist film and curing the resist film at a temperature of at least 180 degrees centigrade. A cured resist film capable of supporting a line having an aspect ratio of at least ten is thus provided. A portion of the cured resist film is removed. A remaining portion of the resist film forms the line. An insulating or nonmagnetic layer is deposited after formation of the line. The line is removed to provide a trench in the insulating or nonmagnetic layer. The trench has a height and a width. The height divided by the width corresponds to the aspect ratio. At least part of the structure is provided in the trench.